Skip to main content
Log in

The magnetoelectric coupling effect of multiferroic fluids and their potential applications

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Due to their unique magnetoelectric coupling effect, composite multiferroic materials have significant potential in multifunctional devices (especially magnetoelectric devices) and have already garnered considerable attention. To fulfil the application requirements, improving the magnetoelectric coupling effect at room temperature has grown up to be a primary area of research. In this paper, we present a novel composite multiferroic material system: multiferroic fluids. The fluids are created by dispersing multiferroic particles in an insulating base fluid, exhibiting a strong magnetoelectric coupling effect under external fields. We investigate the physical mechanism behind the magnetoelectric coupling effect, whereby the multiferroic particles arrange themselves into a structure resembling a chain when subjected to a magnetic or electric field. The clamping effect between these chains results in an induced polarization, which, in turn, displays the magnetoelectric coupling effect. It can be concluded that there are several factors that can influence the magnetoelectric coupling effect, such as the magnetic/electric phase, structure, particle size, molar ratio, fluid viscosity, and volume fraction, as well as external factors, such as magnetic/electric field strength. Based on their magnetoelectric and rheological properties, multiferroic fluids are believed to have potential applications such as magnetoelectric storage, sensors, photovoltaics, biomedicine, optical switches, and devices based on magnetorheological and electrorheological fluids. However, further research and exploration are required. Finally, we propose some challenging issues in multiferroic fluids that need to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

Data availability

The data presented in this study are available from the corresponding author upon reasonable request.

References

  1. H. Wu, Z.X. Zeng, S.L. Xing, M.S. Lan, W.C. Li, Q. Zhang, H. Ao, C. Zhou, R.C. Xu, R.L. Gao, X.L. Deng, Adv. Eng. Mater. (2021). https://doi.org/10.1002/adem.202100410

    Article  Google Scholar 

  2. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Compos. Part. B 166, 204–212 (2019). https://doi.org/10.1016/j.compositesb.2018.12.010

    Article  CAS  Google Scholar 

  3. C.Y. Li, R.C. Xu, R.L. Gao, Z.H. Wang, G. Chen, X.L. g Deng, W. Cai, C.L. Fu, Q.T. Li, Mater. Chem. Phys. 249, 123144 (2020). https://doi.org/10.1016/j.matchemphys.2020.123144

    Article  CAS  Google Scholar 

  4. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, Mater. Chem. Phys. 232, 428–437 (2019). https://doi.org/10.1016/j.matchemphys.2019.05.016

    Article  CAS  Google Scholar 

  5. Z.X. Zeng, M.S. Lan, Q. Zhang, S.M. Chen, Z.H. Wang, X. Lei, X. Deng, R.L. Gao, W. Cai, G. Chen, C.L. Fu, S.L. Chen, J. Magn. Magn. Mater. 563, 169904 (2022). https://doi.org/10.1016/j.jmmm.2022.169904

    Article  CAS  Google Scholar 

  6. H.D. Wu, Z.Y. Gao, W. Cai, R.L. Gao, D.K. Chen, G. Chen, X.L. Deng, Z.H. Wang, X. Lei, X.Y. Wang, C.L. Fu, Mater. Today Chem. 26, 101226 (2022). https://doi.org/10.1016/j.mtchem.2022.101226

    Article  CAS  Google Scholar 

  7. Z.H. Wang, R.L. Gao, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 46(7), 9154–9160 (2020). https://doi.org/10.1016/j.ceramint.2019.12.165

    Article  CAS  Google Scholar 

  8. W.C. Li, H. Ao, X.X. Liu, H. Wu, S.Q. Zhong, Y.L. Zhang, R.L. Gao, X.L. Deng, G. Chen, W. Cai, C.L. Fu, Z.H. Wang, X. Lei, J. Mater. Ssi-Mater El. 33, 20413–20423 (2022). https://doi.org/10.1007/s10854-022-08857-8

    Article  CAS  Google Scholar 

  9. W.C. Li, H. Wu, H. Ao, Z.X. Zeng, R.L. Gao, W. Cai, C.L. Fu, X.L. Deng, G. Chen, Z.H. Wang, X. Lei,.Appl. Phys. A 127, 915 (2021). https://doi.org/10.1007/s00339-021-05060-0

    Article  CAS  Google Scholar 

  10. X.F. Qin, C. Zhou, H. Wu, L. Cheng, T. Fan, R.L. Gao, Z.X. Zeng, H.D. Wu, J. Electron. Mater. 50(26), 1–9 (2021). https://doi.org/10.1007/s11664-021-08794-y

    Article  CAS  Google Scholar 

  11. X. Yang, Y. Gao, J. Wu, Z. Zhou, S. Beguhn, T. Nan, N.X. Sun, IEEE Microw. Wirel. Compon. Lett. 24, 191–193 (2014). https://doi.org/10.1109/LMWC.2013.2292924

    Article  Google Scholar 

  12. M.A. Popov, I.V. Zavislyak, P. Zhou, T. Li, P.J. Shah, B.M. Howe, M.E. McConney, G. Srinivasan, M.R. Page, Microw. Opt. Technol. Lett. 61, 873–877 (2019). https://doi.org/10.1002/mop.31679

    Article  Google Scholar 

  13. N.A. Hill, J. Phys. Chem. B 104, 6694–6709 (2000). https://doi.org/10.1021/jp000114x

    Article  CAS  Google Scholar 

  14. W. Kleemann, C. Binek, Magnetic nanostructures: spin dynamics and spin transport (Springer, Berlin, 2013), pp.163–187

    Book  Google Scholar 

  15. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Sci. Rep. 6, 20330 (2016). https://doi.org/10.1038/srep20330

    Article  CAS  Google Scholar 

  16. X.L. Deng, Z.X. Zeng, R.L. Gao, Z.H. Wang, G. Chen, W. Cai, C.L. Fu, J. Alloy Compd. 831, 5: 1–9 (2020). https://doi.org/10.1016/j.jallcom.2020.154857

    Article  CAS  Google Scholar 

  17. R.L. Gao, H.W. Yang, C.L. Fu, W. Cai, G. Chen, X.L. Deng, J.R. Sun, Y.G. Zhao, B.G. Shen, J. Alloy Compd. 624, 1–8 (2015). https://doi.org/10.1016/j.jallcom.2014.10.180

    Article  CAS  Google Scholar 

  18. G. Srinivasan, Annu. Rev. Mater. Sci. 40, 153–178 (2010). https://doi.org/10.1146/annurev-matsci-070909-104459

    Article  CAS  Google Scholar 

  19. Y. Wang, J. Hu, Y. Lin, C.W. Nan, NPG Asia Mater. 2, 61–68 (2010). https://doi.org/10.1038/asiamat.2010.32

    Article  Google Scholar 

  20. Y. Yan, S. Priya, Hybrid and hierarchical composite materials, ed. by C.S. By, C. Kim, Randow, T. Sano (Springer, Cham, 2015), pp. 95–160

    Chapter  Google Scholar 

  21. R.M. Thankachan, B. Raneesh, A. Mayeen, S. Karthika, S. Vivek, S.S. Nair, S. Thomas, N. Kalarikkal, J. Alloys Compd. 731, 288–296 (2018). https://doi.org/10.1016/j.jallcom.2017.09.309

    Article  CAS  Google Scholar 

  22. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, W. Cai, J. Alloys Compd. 795, 501–512 (2019). https://doi.org/10.1016/j.jallcom.2019.05.013

    Article  CAS  Google Scholar 

  23. Z. Tang, B. Yang, J. Chen, Q. Lu, S. Zhao, J. Alloys Compd. 772, 298–305 (2019). https://doi.org/10.1016/j.jallcom.2018.09.101

    Article  CAS  Google Scholar 

  24. G. Channagoudra, V. Dayal, J. Alloys Compd. 928, 167181 (2022). https://doi.org/10.1016/j.jallcom.2022.167181

    Article  CAS  Google Scholar 

  25. D.K. Pradhan, S. Kumari, P.D. Rack, Nanomaterials 10, 2072 (2072). https://doi.org/10.3390/nano10102072

    Article  CAS  Google Scholar 

  26. C.-W. Nan, Q. Jia, MRS Bull. 40, 719–724 (2015). https://doi.org/10.1557/mrs.2015.196

    Article  Google Scholar 

  27. S. Koner, P. Deshmukh, A.A. Khan, A. Ahlawat, A.K. Karnal, S. Satapathy, Scr. Mater. 189, 30–35 (2020). https://doi.org/10.1016/j.scriptamat.2020.08.001

    Article  CAS  Google Scholar 

  28. R. Stampfli, N.U. Huynh, G. Youssef, Magnetochemistry. 7, 55 (2021). https://doi.org/10.3390/magnetochemistry7040055

    Article  CAS  Google Scholar 

  29. W. Xia, J. Zhou, T. Hu, P. Ren, G. Zhu, Y. Yin, J. Li, Z. Zhang, Compos. Part. A Appl. Sci. Manuf. 131, 105805 (2020). https://doi.org/10.1016/j.compositesa.2020.105805

    Article  CAS  Google Scholar 

  30. H. Wu, R. Xu, C. Zhou, S. Xing, Z. Zeng, H. Ao, W. Li, X. Qin, R. Gao, J. Phys. Chem. Solids. 160, 110314 (2022). https://doi.org/10.1016/j.jpcs.2021.110314

    Article  CAS  Google Scholar 

  31. Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, J. Alloys Compd. 696, 1307–1313 (2017). https://doi.org/10.1016/j.jallcom.2016.11.242

    Article  CAS  Google Scholar 

  32. R. Gao, Z. Wang, G. Chen, X. Deng, W. Cai, C. Fu, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.08.234

    Article  Google Scholar 

  33. T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, P. Saravanan, M.V.R. Reddy, N. Kalarikkal, J. Alloys Compd. 691, 644–652 (2017). https://doi.org/10.1016/j.jallcom.2016.08.277

    Article  CAS  Google Scholar 

  34. M.J. Haque, A.H. Munna, S. Rahman, M.A. Rahman, M.N. Hossain, Results Mater. 8, 100148 (2020). https://doi.org/10.1016/j.rinma.2020.100148

    Article  Google Scholar 

  35. J. Yu, L. Bai, R. Gao, Process. Appl. Ceram. 14, 336–345 (2020). https://doi.org/10.2298/PAC2004336Y

    Article  CAS  Google Scholar 

  36. P.B. Meisenheimer, S. Novakov, N.M. Vu, J.T. Heron, J. Appl. Phys. 123, 240901 (2018). https://doi.org/10.1063/1.5031446

    Article  CAS  Google Scholar 

  37. J. Wang, A. Chen, P. Li, S. Zhang, Materials. 14, 4623 (2021). https://doi.org/10.3390/ma14164623

    Article  CAS  Google Scholar 

  38. N. Adhlakha, K.L. Yadav, M. Truccato, P. Manjusha, A. Rajak, Battiato, E. Vittone, Eur. Polym. J. 91, 100 (2017). https://doi.org/10.1016/j.eurpolymj.2017.03.026

    Article  CAS  Google Scholar 

  39. P.D. Prasad, J. Hemalatha, Mater. Res. Express. 6, 094007 (2019). https://doi.org/10.1088/2053-1591/ab30af

    Article  CAS  Google Scholar 

  40. J. de Vicente, D.J. Klingenberg, R. Hidalgo-Alvarez, Soft Matter. 7, 3701–3710 (2011). https://doi.org/10.1039/c0sm01221a

    Article  CAS  Google Scholar 

  41. L. Wang, X. Gong, W. Wen, Microfluidics: technologies and applications (Springer, Berlin, 2011), pp.91–115

    Book  Google Scholar 

  42. A. Hajalilou, S.A. Mazlan, H. Lavvafi, K. Shameli, Field responsive fluids as smart materials (Springer, Berlin, 2016), pp.67–81

    Google Scholar 

  43. N.M. Kuznetsov, V.V. Kovaleva, S.I. Belousov, S.N. Chvalun, Mater. Today Chem. 26, 101066 (2022). https://doi.org/10.1016/j.mtchem.2022.101066

    Article  CAS  Google Scholar 

  44. R. Gao, Z. Xu, L. Bai, Q. Zhang, Z. Wang, W. Cai, G. Chen, X. Deng, X. Cao, X. Luo, C. Fu, Adv. Electron. Mater. 4, 1800030 (2018). https://doi.org/10.1002/aelm.201800030

    Article  CAS  Google Scholar 

  45. R. Gao, Q. Zhang, Z. Xu, Z. Wang, W. Cai, G. Chen, X. Deng, X. Cao, X. Luo, C. Fu, Nanoscale. 10, 11750–11759 (2018). https://doi.org/10.1039/C8NR02368A

    Article  CAS  Google Scholar 

  46. R. Gao, Q. Leng, Z. Wang, G. Wang, C. Chen, X. Fu, Deng, W. Cai, Mater. Res. Express. 6, 026308 (2018). https://doi.org/10.1088/2053-1591/aaeefc

    Article  CAS  Google Scholar 

  47. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, C. Fu, X. Deng, W. Cai, ACS Appl. Electron. Mater. 1, 1120–1132 (2019). https://doi.org/10.1021/acsaelm.9b00140

    Article  CAS  Google Scholar 

  48. R. Gao, Y. Xue, Z. Wang, G. Chen, C. Fu, X. Deng, X. Lei, W. Cai, J. Mater. Sci. Mater. Electron. 31, 9026–9036 (2020). https://doi.org/10.1007/s10854-020-03436-1

    Article  CAS  Google Scholar 

  49. H. Wu, R. Xu, X. Qin, R. Gao, S. Zhang, C. Zhou, S. Xin, W. Cai, J. Mater. Sci. Mater. Electron. 31, 885–895 (2020). https://doi.org/10.1007/s10854-019-02595-0

    Article  CAS  Google Scholar 

  50. H. Wu, R. Xu, X. Qi, R. Gao, Z. Wang, C. Fu, W. Cai, G. Chen, X. Deng, Appl. Phys. A 126, 1–11 (2020). https://doi.org/10.1007/s00339-019-3276-3

    Article  CAS  Google Scholar 

  51. H. Wu, H. Ao, W. Li, Z. Zeng, R. Gao, C. Fu, G. Chen, X. Deng, Z. Wang, X. Lei, W. Cai, Mater. Today Chem. 21, 100511 (2021). https://doi.org/10.1016/j.mtchem.2021.100511

    Article  CAS  Google Scholar 

  52. H. Ao, W. Li, Y. Zhang, S. Zhong, H. Wu, R. Gao, X. Deng, G. Chen, C. Fu, Z. Wang, W. Cai, X. Lei, J. Mater. Sci. Mater. Electron. 33, 18472–18486 (2022). https://doi.org/10.1007/s10854-022-08700-0

    Article  CAS  Google Scholar 

  53. H. Wu, Y. Zhang, H. Ao, S. Zhong, Z. Zeng, W. Li, R. Gao, C. Fu, G. Chen, X. Deng, Z. Wang, X. Lei, W. Cai, New. J. Chem. 47, 4113–4125 (2023). https://doi.org/10.1039/D2NJ05496E

    Article  CAS  Google Scholar 

  54. B. Dhanalakshmi, P. Kollu, B.C. Sekhar, B.P. Rao, P.S. Rao, Ceram. Int. 43, 9272–9275 (2017). https://doi.org/10.1016/j.ceramint.2017.04.085

    Article  CAS  Google Scholar 

  55. S.R. Wadgane, S.T. Alone, A. Karim, G. Vats, S.E. Shirsath, R.H. Kadam, J. Magn. Magn. Mater. 471, 388–393 (2019). https://doi.org/10.1016/j.jmmm.2018.10.011

    Article  CAS  Google Scholar 

  56. A. Plyushch, D. Lewin, A. Sokal, R. Grigalaitis, V.V. Shvartsman, J. Macutkevič, S. Salamon, H. Wende, K.N. Lapko, P.P. Kuzhir, D.C. Lupascu, J. Banys, J. Alloys Compd. 917, 165519 (2022). https://doi.org/10.1016/j.jallcom.2022.165519

    Article  CAS  Google Scholar 

  57. J. Chen, Z. Tang, Y. Bai, S. Zhao, J. Alloys Compd. 675, 257–265 (2016). https://doi.org/10.1016/j.jallcom.2016.03.119

    Article  CAS  Google Scholar 

  58. L. Jian, A.S. Kumar, C.S.C. Lekha, S. Vivek, I. Salvado, A.L. Kholkin, S.S. Nair, Nano-Struct. Nano-Objects 18, 100272 (2019). https://doi.org/10.1016/j.nanoso.2019.100272

    Article  CAS  Google Scholar 

  59. M.T. Rahul, S.K. Chacko, K. Vinodan, B. Raneesh, A. Philip, K.B.C. Bhadrapriya, B.A. Bose, N. Kalarikkal, D. Rouxel, P. Viswanathan, A. Chandrasekhar, Polymer. 252, 124910 (2022). https://doi.org/10.1016/j.polymer.2022.124910

    Article  CAS  Google Scholar 

  60. M. Hu, R. Su, W. Li, C. Wang, Ceram. Int. 47, 5938–5943 (2021). https://doi.org/10.1016/j.ceramint.2020.09.265

    Article  CAS  Google Scholar 

  61. T. Li, D. Ma, K. Li, Z. Hu, J. Alloys Compd. 747, 558–562 (2018). https://doi.org/10.1016/j.jallcom.2018.03.045

    Article  CAS  Google Scholar 

  62. Z. Zheng, P. Zhou, Y. Liu, K. Liang, R.G. Tanguturi, H. Chen, G. Srinivasan, Y. Qi, T. Zhang, J. Alloys Compd. 818, 152871 (2020). https://doi.org/10.1016/j.jallcom.2019.152871

    Article  CAS  Google Scholar 

  63. V. Sebastian, Magnetoelectric polymer-based composites: fundamentals and applications (Wiley, Hoboken, 2017), pp.125–151

    Book  Google Scholar 

  64. C.A.F. Vaz, J. Hoffman, C.H. Ahn, R. Ramesh, Adv. Mater. 22, 2900–2918 (2010). https://doi.org/10.1002/adma.200904326

    Article  CAS  Google Scholar 

  65. D.K. Pradhan, V.S. Puli, S. Kumari, S. Sahoo, P.T. Das, K. Pradhan, D.K. Pradhan, J.F. Scott, R.S. Katiyar, J. Phys. Chem. C 120, 1936–1944 (2016). https://doi.org/10.1021/acs.jpcc.5b10422

    Article  CAS  Google Scholar 

  66. C.M. Leung, J. Li, D. Viehland, X. Zhuang, J. Phys. D Appl. Phys. 51, 263002 (2018). https://doi.org/10.1088/1361-6463/aac60b

    Article  CAS  Google Scholar 

  67. S. Genc, B. Derin, Key Eng. Mater. 521, 87–99 (2012). https://doi.org/10.4028/www.scientific.net/KEM.521.87

    Article  Google Scholar 

  68. M. Ashtiani, S.H. Hashemabadi, A. Ghaffari, J. Magn. Magn. Mater. 374, 716–730 (2015). https://doi.org/10.1016/j.jmmm.2014.09.020

    Article  CAS  Google Scholar 

  69. J.S. Kumar, P.S. Paul, G. Raghunathan, D.G. Alex, Int. J. Mech. Mater. Eng. 14, 1–18 (2019). https://doi.org/10.1186/s40712-019-0109-2

    Article  Google Scholar 

  70. S. Kumar, R. Sehgal, M.F. Wani, M.D. Sharma, J. Magn. Magn. Mater. 538, 168295 (2021). https://doi.org/10.1016/j.jmmm.2021.168295

    Article  CAS  Google Scholar 

  71. S.M. Shaban, J. Kang, D.H. Kim, Compos. Commun. 22, 100537 (2020). https://doi.org/10.1016/j.coco.2020.100537

    Article  Google Scholar 

  72. R. Ahamed, S.-B. Choi, M.M. Ferdaus, J. Intell. Mater. Syst. Struct. 29, 2051–2095 (2018). https://doi.org/10.1177/1045389X18754350

    Article  Google Scholar 

  73. T. Aziz, A. Ullah, H. Fan, M.I. Jamil, F.U. Khan, R. Ullah, M. Iqbal, A. Ali, B. Ullah, J. Polym. Environ. 29, 3427–3443 (2021). https://doi.org/10.1007/s10924-021-02142-1

    Article  CAS  Google Scholar 

  74. R. Gupta, R.K. Kotnala, J. Mater. Sci. 57, 12710–12737 (2022). https://doi.org/10.1007/s10853-022-07377-4

    Article  CAS  Google Scholar 

  75. P. Sheng, W. Wen, Annu. Rev. Fluid Mech. 44, 143–174 (2012). https://doi.org/10.1146/annurev-fluid-120710-101024

    Article  Google Scholar 

  76. Y.Z. Dong, Y. Seo, H.J. Choi, Soft Matter. 15, 3473–3486 (2019). https://doi.org/10.1039/c9sm00210c

    Article  CAS  Google Scholar 

  77. S.-B. Choi, Micromachines 13, 1904 (1904). https://doi.org/10.3390/mi13111904

    Article  Google Scholar 

  78. H. Yang, G. Zhang, Y. Lin, J. Alloys Compd. 644, 390–397 (2015). https://doi.org/10.1016/j.jallcom.2015.05.020

    Article  CAS  Google Scholar 

  79. G. Chen, L. Cheng, H. Wu, S. Zhang, R. Xu, Q. Zhan, Z. Li, C. Fu, Appl. Phys. A 125, 1–10 (2019). https://doi.org/10.1007/s00339-019-3145-0

    Article  CAS  Google Scholar 

  80. Y. Hong, W. Wen, J. Intell, Mater. Syst. Stru. 27, 866–871 (2016). https://doi.org/10.1177/1045389X15596623

    Article  CAS  Google Scholar 

  81. S. Zhong, Y. Zhang, G. Sun, H. Wu, H. Ao, W. Li, R. Gao, X. Deng, W. Cai, Z. Wang, C. Fu, X. Lei, G. Chen, J. Mater. Res. 38, 2576–2587 (2023). https://doi.org/10.1557/s43578-023-00987-x

    Article  CAS  Google Scholar 

  82. S. Zhong, Y. Zhang, G. Sun, C. Chen, Y. Ding, H. Ao, R. Gao, X. Deng, W. Cai, Z. Wang, C. Fu, X. Lei, G. Chen, J. Mater. Sci. : Mater. Electron. 34, 1733 (2023). https://doi.org/10.1007/s10854-023-11110-5

    Article  CAS  Google Scholar 

  83. J.-M. Hu, T. Nan, N.X. Sun, L.-Q. Chen, MRS Bull. 40, 728–735 (2015). https://doi.org/10.1557/mrs.2015.195

    Article  Google Scholar 

  84. S. Wang, H. Lee, F. Ebrahimi, P.K. Amiri, K.L. Wang, P. Gupta, IEEE J. Emerg. Sel. Topics Power Electron. 6, 134–145 (2016). https://doi.org/10.1109/JETCAS.2016.2547681

    Article  Google Scholar 

  85. J.-M. Hu, Z. Li, L.-Q. Chen, C.-W. Nan, Nat. Commun. 2, 553 (2011). https://doi.org/10.1038/ncomms1564

    Article  CAS  Google Scholar 

  86. M. Li, C. Dong, H. Zhou, Z. Wang, X. Wang, X. Liang, Y. Lin, N.X. Sun, IEEE Sens. Lett. 1, 1–4 (2017). https://doi.org/10.1109/LSENS.2017.2752216

    Article  Google Scholar 

  87. J. Su, F. Niekiel, S. Fichtner, L. Thormaehlen, C. Kirchhof, D. Meyners, E. Quandt, B. Wagner, F. Lofink, Appl. Phys. Lett. 117, 132903 (2020). https://doi.org/10.1063/5.0022636

    Article  CAS  Google Scholar 

  88. C. Fang, J. Jiao, J. Ma, D. Lin, H. Xu, X. Zhao, H. Luo, J. Phys. D Appl. Phys. 48, 465002 (2015). https://doi.org/10.1088/0022-3727/48/46/465002

    Article  CAS  Google Scholar 

  89. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, F. Rosei, Nat. Photonics. 9, 61–67 (2015). https://doi.org/10.1038/NPHOTON.2014.255

    Article  CAS  Google Scholar 

  90. Y. Sun, X. Liu, J. Zeng, J. Yan, D. Shi, H. Liu, J. Electron. Mater. 44, 4207–4212 (2015). https://doi.org/10.1007/s11664-015-3918-y

    Article  CAS  Google Scholar 

  91. J. Chakrabartty, R. Nechache, C. Harnagea, S. Li, F. Rosei, Nanotechnology. 27, 215402 (2016). https://doi.org/10.1088/0957-4484/27/21/215402

    Article  CAS  Google Scholar 

  92. T. Zeng, Z. Liu, G. Huang, J. Hou, G. Zhang, Mater. Lett. 309, 131411 (2022). https://doi.org/10.1016/j.matlet.2021.131411

    Article  CAS  Google Scholar 

  93. Z. Wu, Y. Zhang, K. Ma, Y. Cao, H. Lin, Y. Jia, J. Chen, H. Li, Phys. Status Solidi-R. 8, 36–39 (2014). https://doi.org/10.1002/pssr.201308259

    Article  CAS  Google Scholar 

  94. A. Berenov, P. Petrov, B. Moffat, J. Phair, L. Allers, R.W. Whatmore, APL Mater. 9, 041108 (2021). https://doi.org/10.1063/5.0039593

    Article  CAS  Google Scholar 

  95. M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015). https://doi.org/10.1080/10408436.2014.992584

    Article  CAS  Google Scholar 

  96. S. Kopyl, R. Surmenev, M. Surmeneva, Y. Fetisov, A. Kholkin, Mater. Today Bio. 12, 100149 (2021). https://doi.org/10.1016/j.mtbio.2021.100149

    Article  CAS  Google Scholar 

  97. N. Kolishetti, A. Vashist, A.Y. Arias, V. Atluri, S. Dhar, M. Nair, Mol. Aspects Med. 83, 101046 (2022). https://doi.org/10.1016/j.mam.2021.101046

    Article  CAS  Google Scholar 

  98. I.T. Smith, E. Zhang, Y.A. Yildirim, M.A. Campos, M. Abdel-Mottaleb, B. Yildirim, Z. Ramezani, V.L. Andre, A. Scott-Vandeusen, P. Liang, S. Khizroev, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 15, e1849 (2022). https://doi.org/10.1002/wnan.1849

    Article  CAS  Google Scholar 

  99. E.H. Apu, M. Nafiujjaman, S. Sandeep, A.V. Makela, A. Khaleghi, S. Vainio, C.H. Contag, J. Li, I. Balasingham, T. Kim, N. Ashammakhi, Mater. Chem. Front. 6, 1368–1390 (2022). https://doi.org/10.1039/d2qm00093h

    Article  CAS  Google Scholar 

  100. R. Guduru, P. Liang, C. Runowicz, M. Nair, V. Atluri, S. Khizroev, Sci. Rep. 3, 2953 (2013). https://doi.org/10.1038/srep02953

    Article  Google Scholar 

  101. K. Yue, R. Guduru, J. Hong, P. Liang, M. Nair, S. Khizroev, PLOS ONE 7, e44040 (2012). https://doi.org/10.1371/journal.pone.0044040

    Article  CAS  Google Scholar 

  102. K.L. Kozielski, A. Jahanshahi, H.B. Gilbert, Y. Yu, Ã. Erin, D. Francisco, F. Alosaimi, Y. Temel, M. Sitti, Sci. Adv. 7, eabc4189 (2021). https://doi.org/10.1126/sciadv.abc4189

    Article  CAS  Google Scholar 

  103. S. Betal, M. Dutta, B. Shrestha, L. Cotica, L. Tang, A. Bhalla, R. Guo, Integr. Ferroelectr. 174, 186–194 (2016). https://doi.org/10.1080/10584587.2016.1196332

    Article  CAS  Google Scholar 

  104. H. Song, D. Kim, S.A. Abbasi, N.L. Gharamaleki, E. Kim, C. Jin, S. Kim, J. Hwang, J. Kim, X. Chen, B.J. Nelson, S. Pané, H. Choi, Mater. Horizons. 9, 3031–3038 (2022). https://doi.org/10.1039/d2mh00693f

    Article  CAS  Google Scholar 

  105. F. Mushtaq, H. Torlakcik, Q. Vallmajo-Martin, E.C. Siringil, J. Zhang, C. Röhrig, Y. Shen, Y. Yu, X. Chen, R. Müller, B.J. Nelson, S. Pané, Appl. Mater. Today. 16, 290–300 (2019). https://doi.org/10.1016/j.apmt.2019.06.004

    Article  Google Scholar 

  106. D.X. Phu, S.B. Choi, Front. Mater. 6, 19 (2019). https://doi.org/10.3389/fmats.2019.00019

    Article  Google Scholar 

  107. D. Hua, X. Liu, Z. Li, P. Fracz, A. Hnydiuk-Stefan, Z. Li, Front. Mater. 8, 640102 (2021). https://doi.org/10.3389/fmats.2021.640102

    Article  Google Scholar 

  108. X. Yuan, T. Tian, H. Ling, T. Qiu, H. He, Shock. Vib. (2019). https://doi.org/10.1155/2019/1498962

    Article  Google Scholar 

  109. S.L. Nie, D.K. Xin, H. Ji, F.L. Yin, J. Intel Mater. Systs Stru. 30, 764–777 (2019). https://doi.org/10.1177/1045389X19828526

    Article  Google Scholar 

  110. J.-S. Oh, S.-B. Choi, Curr. Smart Mater. 4, 15–21 (2019). https://doi.org/10.2174/2405465804666190408153926

    Article  Google Scholar 

  111. S. Li, W. Meng, Y. Wang, Sci. Prog. 103, 0036850419879000 (2020). https://doi.org/10.1177/0036850419879000

    Article  Google Scholar 

  112. Q.-H. Nguyen, S.-B. Choi, N.M. Wereley, Smart Mater. Stru. 17, 025024 (2008). https://doi.org/10.1088/0964-1726/17/2/025024

    Article  Google Scholar 

  113. Z. Xing, W. Fan, D. Huang, G. Xia, Opt. Lett. 45, 3537–3540 (2020). https://doi.org/10.1364/OL.390440

    Article  CAS  Google Scholar 

  114. Y. Zhao, R. Lv, Y. Zhang, Q. Wang, Opt. Lasers Eng. 50, 1177–1184 (2012). https://doi.org/10.1016/j.optlaseng.2012.03.012

    Article  Google Scholar 

  115. C. Liu, D. Wang, L.-X. Yao, L. Li, Q.-H. Wang, Appl. Opt. 54, 2672–2676 (2015). https://doi.org/10.1364/AO.54.002672

    Article  CAS  Google Scholar 

  116. H.E. Horng, C.S. Chen, K.L. Fang, S.Y. Yang, J.J. Chieh, C.Y. Hong, H.C. Yang, Appl. Phys. Lett. 85, 5592–5594 (2004). https://doi.org/10.1063/1.1833564

    Article  CAS  Google Scholar 

Download references

Funding

The present work has been supported by the Scientific and Technological Research Key Program of Chongqing Municipal Education Commission (Grant No. KJZD-K20220150), the Chongqing Research Program of Basic Research and Frontier Technology (Grant Nos. cstc2019jcyj-msxmX0071, cstc2021jcyj-msxmX0008, cstc2021jcyj-msxmX0039, cstc2021jcyj-msxmX0599), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the Natural Science Foundation of Chongqing (Grant Nos. cstc2020jcyj-zdxmX0008, cstc2020jcyj-msxmX0030), the Leading Talents of Scientific and Technological Innovation in Chongqing (Grant No. CSTCCXLJRC201919), the special project of Chongqing technology innovation and application development (Grant No. cstc2020jscx-msxmX0218), the Provincial and Ministerial Co-constructive of Collaborative Innovation Center for MSW Comprehensive Utilization, the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (Grant No. KJQN202001528), the Research Foundation of Chongqing University of Science and Technology (Grant No. Ckrc2019020), the special project for technological innovation and application development of Chongqing Science and technology enterprises (Grant No. cstc2021kqjscx-phxmX0008), the Postgraduate Technology Innovation project of Chongqing (Grant No. CYS23743), and the Postgraduate Technology Innovation project of Chongqing University of Science & Technology (Grant Nos. YKJCX2220205, YKJCX2220222, YKJCX2220224, YKJCX2220230).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by SZ, GS, YZ, YD, KR, and HL. The first draft of the manuscript was written by CC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rongli Gao or Wei Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Zhong, S., Sun, G. et al. The magnetoelectric coupling effect of multiferroic fluids and their potential applications. J Mater Sci: Mater Electron 34, 2041 (2023). https://doi.org/10.1007/s10854-023-11490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11490-8

Navigation