Skip to main content
Log in

Effect of particle size on magnetodielectric and magnetoelectric coupling effect of CoFe2O4@BaTiO3 composite fluids

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CoFe2O4 particles with two different sizes were prepared using hydrothermal method by controlling the technological parameters. On that basis, core–shell structure CoFe2O4@BaTiO3 (CFO@BTO) particles were prepared by sol–gel process. The surfactant treated composite particles were then distributed into a highly-insulating heptane to form CFO@BTO composite fluids. Influences of CFO particle size on the magnetodielectric and magnetoelectric coupling effect were comparatively investigated. XRD, TEM and SAED results indicate that the size of CFO particles are ~ 12 and ~ 18 nm, respectively, while the prepared CFO@BTO particles show bi-phase and core–shell composite structure, and the size of CFO@BTO particles are ~ 28 and ~ 35 nm, respectively. The composite fluids show quasi super paramagnetic behavior at room temperature due to the size effect and Brovnian motion. When the size of CFO is 18 nm, the CFO@BTO composite fluids shows larger remnant magnetization and coercive field. Strong dependence of dielectric properties on external magnetic field has been observed, of which the composite fluids show negative magnetodielectric effect, and the value of permittivity was decreased by 8% at 500 Oe. When size of CFO is 12 nm, the corresponding specimen with shows more obvious magnetic response, and it has larger remnant polarization. The values of both coercive electric field and remnant polarization of the two kinds of CFO@BTO composite fluids have been enhanced distinctly under the action of external magnetic field. When the particle size of CFO is smaller, the magnetolectric coupling coefficient αE of CFO@BTO composite fluid is larger, and this value decreases with increasing external magnetic field. When the particle sizes of CFO are 12 and 18 nm, the maximal values of αE are about 7 and 10 V/cm·Oe, respectively. These values are several orders of magnitude larger than that of CFO/BTO and other magnetoelectric composite ceramics. The strong coupling effect can be explained based on the formation, movement and variation of chain-like structure in the presence of external field. These results may supply useful information for enhancing coupling effect and might play important roles in practical applications in novel magnetoelectric devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 44, S84–S87 (2018)

    Article  CAS  Google Scholar 

  2. X.Y. Gao, L.G. Li, D. Zhang, X.J. Wang, J. Jian, Z.H. He, H.Y. Wang, Nanoscale 12(10), 5914–5921 (2020)

    Article  CAS  Google Scholar 

  3. R.L. Gao, H.W. Yang, Y.S. Chen, J.R. Sun, Y.G. Zhao, B.G. Shen, J. Alloy. Compd. 591, 346 (2014)

    Article  CAS  Google Scholar 

  4. R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Mater. Sci. Mater. Electron. 29, 16226–16237 (2018)

    Article  CAS  Google Scholar 

  5. R.L. Gao, Y.S. Chen, J.R. Sun, Y.G. Zhao, J.B. Li, B.G. Shen, J. Appl. Phys. 113, 183501 (2013)

    Article  Google Scholar 

  6. H. Wang, Y.Y. Dai, Z.R. Liu, Q.D. Xie, C. Liu, W.N. Lin, L. Liu, P. Yang, J. Wang, T.V. Venkatesan, G.M. Chow, H. Tian, Z.D. Zhang, J.S. Chen, Adv. Mater. 32(8), 1904415 (2020)

    Article  CAS  Google Scholar 

  7. R.L. Gao, Z.Y. Xu, L. Bai, Q.M. Zhang, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Adv. Electron. Mater. 4(6), 1800030 (2018)

    Article  Google Scholar 

  8. K.K. Mishra, A.A. Instan, S. Kumari, J.F. Scott, R.S. Katiyar, Sci. Rep. 10, 2991 (2020)

    Article  CAS  Google Scholar 

  9. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10(25), 11750–11759 (2018)

    Article  CAS  Google Scholar 

  10. Z.Y. Xiao, R.L. Conte, M.G. Goikoetxea, R.V. Chopdekar, C.H. Lambert, X. Li, A.T. N'Diaye, P. Shafer, S. Tiwari, A. Barra, A. Chavez, K.P. Mohanchandra, G.P. Carman, K. Wang, S. Salahuddin, E. Arenholz, J. Bokor, R.N. Candler, ACS Appl. Mater. Interfaces. 12(5), 6752–6760 (2020)

    Article  CAS  Google Scholar 

  11. H. Wu, R.C. Xu, X.F. Qin, R.L. Gao, S.L. Zhang, C. Zhou, S.L. Xing, W. Cai, J. Mater. Sci. Mater. Electron. 31, 885–895 (2019)

    Article  Google Scholar 

  12. R.L. Gao, Q.Z. Leng, Z.H. Wang, G. Chen, C.L. Fu, X.L. Deng, W. Cai, Mater. Res. Express. 6, 026308 (2019)

    Article  Google Scholar 

  13. J.P. Peters, N.C. Bristowe, D. Rusu, G. Apachitei, R. Beanland, M. Alexe, A.M. Sanchez, ACS Appl. Mater. Interfaces. 12(9), 10657–10663 (2020)

    Article  Google Scholar 

  14. C. Liu, F. An, P.S.M. Gharavi, Q.W. Lu, J.K. Zha, C. Chen, L.M. Wang, X.Z. Zhan, Z.D. Xu, Y. Zhang, K. Qu, J.M. Yao, Y. Ou, Z.M. Zhao, X.L. Zhong, D.W. Zhang, N. Valanoor, L. Chen, T. Zhu, D.Y. Chen, X.F. Zhai, P. Gao, T.T. Jia, S.H. Xie, G.K. Zhong, J.Y. Li, Natl. Sci. Rev. 7(1), 84–91 (2020)

    Article  Google Scholar 

  15. R.C. Xu, S.L. Zhang, F.Q. Wang, Q.W. Zhang, Z.D. Li, Z.H. Wang, R.L. Gao, C.L. Fu, J. Electron. Mater. 48(1), 386–400 (2019)

    Article  CAS  Google Scholar 

  16. R.G. Cai, V.A. Antohe, B. Nysten, L. Piraux, A.M. Jonas, Adv. Func. Mater. 30(8), 1910371 (2020)

    Article  CAS  Google Scholar 

  17. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Compos. B 166, 204–212 (2019)

    Article  CAS  Google Scholar 

  18. F. Narita, M. Fox, Adv. Energy Mater. 20(5), 1700743 (2017)

    Article  Google Scholar 

  19. X.Z. Chen, M. Hoop, N. Shamsudhin, T. Huang, B. Özkale, Q. Li, E. Siringil, F. Mushtaq, L.D. Tizio, B.J. Nelson, S. Pa, Adv. Mater. 29(8), 1605458 (2017)

    Article  Google Scholar 

  20. H. Wu, R.C. Xu, X.F. Qin, R.L. Gao, Z.H. Wang, C.L. Fu, W. Cai, G. Chen, X.L. Deng, Appl. Phys. A 126, 94–104 (2020)

    Article  CAS  Google Scholar 

  21. R.L. Gao, J. Li, S.N. Han, B.C. Wen, T.Z. Zhang, H. Miao, Q.M. Zhang, J. Exp. Nanosci. 7, 282 (2012)

    Article  CAS  Google Scholar 

  22. Y.Z. Xue, R.C. Xu, Z.H. Wang, R.L. Gao, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Electron. Mater. 48(8), 4806–4817 (2019)

    Article  CAS  Google Scholar 

  23. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, C.L. Fu, X.L. Deng, W. Cai, ACS Appl. Electron. Mater. 1(7), 1120–1132 (2019)

    Article  CAS  Google Scholar 

  24. J.M. Zhang, Y. Huang, L. Jin, F. Rosei, F. Vetrone, J.P. Claverie, ACS Appl. Mater. Interfaces. 9(9), 8142–8150 (2017)

    Article  CAS  Google Scholar 

  25. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, X.D. Luo, Y. Qiu, Wei Cai. J. Mater. Sci. 30(11), 10256–10273 (2019)

    CAS  Google Scholar 

  26. W.M. Xia, J.H.G. Zhou, T.L. Hu, P.G. Ren, G.J. Zhu, Y.L. Yin, J.L. Li, Z.C. Zhang, Compos. Part A 131, 105805 (2020)

    Article  CAS  Google Scholar 

  27. A. Ahlawat, A.A. Khan, P. Desmukh, M. Shirolkar, J.N. Li, H.Q. Wang, S. Satapathy, A.K. Karnal, Mater. Lett. 261, 127082 (2020)

    Article  CAS  Google Scholar 

  28. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, J. Alloy. Compd. 795, 501–512 (2019)

    Article  CAS  Google Scholar 

  29. R.M. Thankachan, B. Raneesh, A. Mayeen, S. Karthika, S. Vivek, S.S. Nair, S. Thomas, N. Kalarikkal, J. Alloy. Compd. 731, 288–296 (2018)

    Article  CAS  Google Scholar 

  30. A.R. Abraham, S. Joseph, M. Arif, P.M.G. Nambissan, D. Das, D. Rouxel, O.S. Oluwafemi, S. Thomas, N. Kalarikkal, Phys. Chem. Chem. Phys. 21, 8709–8720 (2019)

    Article  CAS  Google Scholar 

  31. R.L. Gao, X.F. Qin, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, C.L. Fu, G. Chen, X.L. Deng, W. Cai, Mater. Chem. Phys. 232, 428–437 (2019)

    Article  CAS  Google Scholar 

  32. N. Sheoran, V. Kumar, A. Kumar, J. Magn. Magn. Mater. 475, 30–37 (2019)

    Article  CAS  Google Scholar 

  33. T. Woldu, B. Raneesh, B.K. Hazra, S. Srinath, P. Saravanan, M.V.R. Reddy, N. Kalarikkal, J. Alloy. Compd. 691, 644–652 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the Chongqing Research Program of Basic Research and Frontier Technology (CSTC2018jcyjAX0416, CSTC2019jcyj-msxmX0071), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-M201901501), the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (KJQN201801509, KJQN20190150), the Program for Creative Research Groups in University of Chongqing (Grant No. CXQT19031), the Innovation Program for Chongqing's Overseas Returnees (cx2019159), the Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (cstc2017shmsA90015), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the Program for Technical and Scientific Innovation Led by Academician of Chongqing, the Latter Foundation Project of Chongqing University of Science & Technology (CKHQZZ2008002), and the Scientific & Technological Achievements Foundation Project of Chongqing University of Science & Technology (CKKJCG2016328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongli Gao or Wei Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, R., Xue, Y., Wang, Z. et al. Effect of particle size on magnetodielectric and magnetoelectric coupling effect of CoFe2O4@BaTiO3 composite fluids. J Mater Sci: Mater Electron 31, 9026–9036 (2020). https://doi.org/10.1007/s10854-020-03436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03436-1

Navigation