Skip to main content
Log in

Selection of materials and optimization of antireflection coatings for silicon solar cells using Sentaurus TCAD

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this article, antireflection coatings (ARC) were designed for silicon-based solar cells, and their corresponding performance parameters were evaluated using TCAD (Technology computer-aided design) Sentaurus. The optical propagation and absorption of the device were considered using the transfer matrix method (TMM) and complex refractive index model. Simulation results confirmed that the reflectance for single-layer ARC (SLARC) could be reduced to zero only at a single wavelength. A much broader low-reflectance region is achieved using double-layer antireflection coatings (DLARC). This reduction in reflectance of visible light suggested better utilization of the incident solar radiation. The highest efficiency of 14.12% was achieved for DLARC (CaF2/TiO2)-based devices when compared to 10.51% for SLARC (ZnO) and 9.21% for no ARC condition. The effects on open-circuit voltage (VOC), short-circuit current density (Jsc), reflection, external quantum efficiency (EOE), and photovoltaic efficiency (\(\eta \%\)) due to different ARCs are presented in this work for silicon-based solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. G. Hashmi et al., J. Theor. Appl. Phys. 12(4), 327–334 (2018). https://doi.org/10.1007/s40094-018-0313-0

    Article  Google Scholar 

  2. D. Kc et al., J. Electron. Mater. 50(4), 2199–2205 (2021). https://doi.org/10.1007/s11664-020-08696-5

    Article  CAS  Google Scholar 

  3. S. Vallisree, R. Thangavel, T.R. Lenka, Mater. Res. Express (2021). https://doi.org/10.1088/2053-1591/aaf023

    Article  Google Scholar 

  4. B. Hussain, A. Ebong, I. Ferguson, Sol. Energy Mater. Sol. Cells 139, 95–100 (2015). https://doi.org/10.1016/j.solmat.2015.03.017

    Article  CAS  Google Scholar 

  5. X. Yan et al., Appl. Opt. 58(15), E1–E6 (2019). https://doi.org/10.1364/AO.58.0000E1

    Article  CAS  Google Scholar 

  6. R. Sagar, A. Rao, Mater. Res. Express (2020). https://doi.org/10.1088/2053-1591/ab6ad5

    Article  Google Scholar 

  7. K.W.A. Chee et al., Energy Rep. 4, 266–273 (2018). https://doi.org/10.1016/j.egyr.2018.02.002

    Article  Google Scholar 

  8. R. Rathanasamy et al., Adv. Mater. Sci. Eng. 2022, 1–11 (2022). https://doi.org/10.1155/2022/9444524

    Article  CAS  Google Scholar 

  9. A. Zahid Muhammad et al., Curr. Photovolt. Res. 8(1), 1–5 (2020)

    Google Scholar 

  10. M. Subramanian et al., Electronics 10(24), 3132 (2021)

    Article  CAS  Google Scholar 

  11. L. Zhao et al., Opt. Mater. 121, 111594 (2021). https://doi.org/10.1016/j.optmat.2021.111594

    Article  CAS  Google Scholar 

  12. R. Sivakumar, P. Gopalakrishnan, M.S. Abdul Razak, Astyw fyki., Pigment Resin Technol. 51(2), 171–177 (2021)

    Article  Google Scholar 

  13. I. Kanmaz, Ü.Z. Abdullah, Int. Adv. Res. Eng. J. 5(1), 14–18 (2021)

    Article  Google Scholar 

  14. S. Maqsood et al., J. Electron. Mater. 52(1), 165–176 (2023). https://doi.org/10.1007/s11664-022-09939-3

    Article  CAS  Google Scholar 

  15. M. Medhat et al., Turk. J. Phys. 40, 30–39 (2016). https://doi.org/10.3906/fiz-1508-14

    Article  CAS  Google Scholar 

  16. M.A. Zahid et al., Cryst. Res. Technol. (2022). https://doi.org/10.1002/crat.202100233

    Article  Google Scholar 

  17. A. Diaw et al., Am. J. Energy Res. 11(1), 27–30 (2023). https://doi.org/10.12691/ajer-11-1-3

    Article  CAS  Google Scholar 

  18. A. Sultanov, K. Nussupov, N. Beisenkhanov, Mater. Today 49, 2511–2515 (2022). https://doi.org/10.1016/j.matpr.2020.12.606

    Article  CAS  Google Scholar 

  19. S. Saint-André et al., Sol. Energy Mater. Sol. Cells 230, 111201 (2021). https://doi.org/10.1016/j.solmat.2021.111201

    Article  CAS  Google Scholar 

  20. X. Sun et al., Surf. Interfaces 24, 101135 (2021). https://doi.org/10.1016/j.surfin.2021.101135

    Article  CAS  Google Scholar 

  21. M.A. Zahid et al., Appl. Sci. (2020). https://doi.org/10.3390/app10165647

    Article  Google Scholar 

  22. K. ChandraSekharReddy et al., Solar Energy 190, 119–125 (2019). https://doi.org/10.1016/j.solener.2019.07.083

    Article  CAS  Google Scholar 

  23. C. Ma et al., Appl. Surf. Sci. 560, 149924 (2021). https://doi.org/10.1016/j.apsusc.2021.149924

    Article  CAS  Google Scholar 

  24. R. Huang et al., Comput. Mater. Sci. (2020). https://doi.org/10.1016/j.commatsci.2020.109600

    Article  Google Scholar 

  25. M. Mostefaoui et al., Energy Procedia 74, 736–744 (2015). https://doi.org/10.1016/j.egypro.2015.07.809

    Article  CAS  Google Scholar 

  26. G. Timò, L. Andreani, in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC). 2017. https://doi.org/10.1109/PVSC.2017.8521506

  27. J.M. Siqueiros, R. Machorro, L.E. Regalado, Appl. Opt. 27(12), 2549–2553 (1988). https://doi.org/10.1364/AO.27.002549

    Article  CAS  Google Scholar 

  28. B.S. Richards, Sol. Energy Mater. Sol. Cells 79(3), 369–390 (2003). https://doi.org/10.1016/S0927-0248(02)00473-7

    Article  CAS  Google Scholar 

  29. J. Jung et al., J. Nanosci. Nanotechnol. 18(2), 1274–1278 (2018). https://doi.org/10.1166/jnn.2018.14928

    Article  CAS  Google Scholar 

  30. D.F. Zambrano et al., Sol. Energy Mater. Sol. Cells (2021). https://doi.org/10.1016/j.solmat.2020.110841

    Article  Google Scholar 

  31. L. Fanni et al., Mater. Res. Express 2(7), 075006 (2015). https://doi.org/10.1088/2053-1591/2/7/075006

    Article  CAS  Google Scholar 

  32. M. Moayedfar, M.K. Assadi, Rev. Adv. Mater. Sci. 53(2), 187–205 (2018). https://doi.org/10.1515/rams-2018-0013

    Article  CAS  Google Scholar 

  33. T.M. Letcher, V.M. Fthenakis, Index, in A Comprehensive Guide to Solar Energy Systems. ed. by T.M. Letcher, V.M. Fthenakis (Academic Press, Cambridge, 2018), pp.505–517

    Google Scholar 

  34. H.A. Macleod, Thin-film optical filters (CRC Press, Boca Raton, 2017). https://doi.org/10.1201/9781420033236

    Book  Google Scholar 

  35. I.H. Malitson, Appl. Opt. 2(11), 1103–1107 (1963). https://doi.org/10.1364/AO.2.001103

    Article  CAS  Google Scholar 

  36. A. Jolivet et al., Appl. Surf. Sci. 608, 155214 (2023). https://doi.org/10.1016/j.apsusc.2022.155214

    Article  CAS  Google Scholar 

  37. A.J. Addie, R.A. Ismail, M.A. Mohammed, Silicon 14(18), 12485–12493 (2022). https://doi.org/10.1007/s12633-022-01948-5

    Article  CAS  Google Scholar 

  38. R.L. Politanskyi et al., Opt. Mater. 102, 109782 (2020). https://doi.org/10.1016/j.optmat.2020.109782

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge MHRD, Govt of India, for the financial support to Anterdipan Singh in the form of PMRF fellowship and Rohan Ghosh for MSR fellowship. We also acknowledge Professor Gaurav Trivedi (EEE, IIT Guwahati) for providing access to Sentaurus TCAD.

Funding

No external funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

AS contributed to conceptualization, methodology, simulation, writing—original draft, and editing. RG contributed to simulation, review, and editing, and PA contributed to supervision, conceptualization, and validation—review & editing.

Corresponding author

Correspondence to Pratima Agarwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Ghosh, R. & Agarwal, P. Selection of materials and optimization of antireflection coatings for silicon solar cells using Sentaurus TCAD. J Mater Sci: Mater Electron 34, 1235 (2023). https://doi.org/10.1007/s10854-023-10612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10612-6

Navigation