Skip to main content
Log in

Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Cadmium telluride (CdTe) is currently known to be one of the reliable cost-effective materials for manufacturing solar cells. In this work, different materials such as magnesium fluoride (MgF2), aluminum trioxide (Al2O3), tin oxide (SnO2), and magnesium oxide (MgO) were applied as a single antireflection coating (ARC) layer and characterized their optoelectrical properties of the resulting CdTe solar cells. A personal computer one-dimensional (PC1D) simulation study was carried out to instigate the overall performance when varying the thickness of the absorber and window layers. Simulation results confirmed that Al2O3 single ARC layer with thickness of 83 nm achieved the best efficiency of 17.81% as compared with the other ARC materials. The Al2O3 single ARC layer resulted in a short-circuit current of 2.89 A and open-circuit voltage of 0.740 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Sista, Z. Hong, L.-M. Chen, and Y. Yang, Energy Environ. Sci. 4, 1606 (2011).

    Article  CAS  Google Scholar 

  2. I.S. Jung, J. Choi, D.K. Shah, and M. S. Akhtar, J. Nanoelectron. Optoelectron. 15, 720 (2020).

    Article  Google Scholar 

  3. D.K. Shah, Y.-H. Son, H.-R. Lee, M.S. Akhtar, O.-B. Yang, and C.Y. Kim, Chem. Phys. Lett. 754, 137756 (2020).

    Article  CAS  Google Scholar 

  4. H.I. Salim, V. Patel, A. Abbas, J.M. Walls, and I. Dharmadasa, J. Mater. Sci. Mater. Electron. 26, 3119 (2015).

    Article  CAS  Google Scholar 

  5. L.-C. Chen, Z-L. Tseng, and C.-C. Lin, J. Nanoelectron. Optoelectron. 14, 723 (2019).

    Article  CAS  Google Scholar 

  6. K. Han, S.-Y. Jun, H. Lim, E. Bae, S.H. Park, D. Jung, N. Kwon, and S.G. Yu, J. Nanosci. Nanotechnol. 20, 7100 (2020).

    Article  Google Scholar 

  7. G. Hashmi, M.J. Rashid, Z.H. Mahmood, M. Hoq, and M.H. Rahman, J. Theor. Appl. Phys. 12, 327 (2018).

    Article  Google Scholar 

  8. D.K. Shah, S.Y. Han, M.S. Akhtar, O.-B. Yang, and C.Y. Kim, Nanosci. Nanotechnol. Lett. 11, 159 (2019).

    Article  CAS  Google Scholar 

  9. M.A. Green, Sol. Energy Mater. Sol. Cells 92, 1305 (2008).

    Article  CAS  Google Scholar 

  10. M.J. de Wild-Scholten, Sol. Energy Mater. Sol. Cells 119, 296 (2013).

    Article  CAS  Google Scholar 

  11. I.M. Dharmadasa, A.E. Alam, A.A. Ojo, and O.K. Echendu, J. Mater. Sci. Mater. Electron. 30, 20330 (2019).

    Article  CAS  Google Scholar 

  12. O.A. Dobrozhan, A.S. Opanasyuk, and V.V. Grynenko, J. Nano- Electron. Phys. 6, 4035 (2014).

    Google Scholar 

  13. S. Kaci, R. Rahmoune, A. Boukezzata, Y. Boudiaf, I. Bozetine, A. Keffous, L. Talbi, Y. Ouadah, K. Benfadel, A. Manseri, S. Achacha, H. Cheraga, and L. Guerbous, J. Nanoelectron. Optoelectron. 14, 1002 (2019).

    Article  CAS  Google Scholar 

  14. J.E. Park, S.M. Park, E.J. Bae, and D. Lim, J. Nanosci. Nanotechnol. 20, 6653 (2020).

    Article  Google Scholar 

  15. D. Parashar, V.S.G. Krishna, S.N. Moger, R. Keshav, and M. G. Mahesha, Trans. Electr. Electron. Mater. 21, 587 (2020).

    Article  Google Scholar 

  16. M.I. Khan, Shahnawaz, S. Imran, M.W. Yousaf, A. Wahab, F. Adil, S. Majeed, M.F. Khan and T. Aziz, J. Nanoelectron. Optoelectron. 14, 1582 (2019).

    Article  Google Scholar 

  17. Y. Zhang, S. Zhou, C. Li, C. Cao, P. Ren, and R. Luo, Sci. Adv. Mater. 11, 1773 (2019).

    Article  CAS  Google Scholar 

  18. P.-C. Wang, F.-Z. Li, Y. Zhang, H.-C. Fan, X.-Q. Zhou, Y.-L. Song, and K.-J. Jiang, J. Nanosci. Nanotechnol. 20, 7748 (2020).

    Article  CAS  Google Scholar 

  19. K.W. Mitchell, A.L. Fahrenbruch, and R.H. Bube, J. Appl. Phys. 48, 4365 (1977).

    Article  CAS  Google Scholar 

  20. Z. Fang, X.C. Wang, H.C. Wu, and C.Z. Zhao, Int. J. Photoenergy. 2011, 297350 (2011).

    Article  Google Scholar 

  21. S. Singh, T. Raj, H. Singh, and J. Singh, J. Nanoelectron. Optoelectron. 14, 1468 (2019).

    Article  CAS  Google Scholar 

  22. H. Matsumoto, K. Kuribayashi, H. Uda, Y. Komatsu, A. Nakano, and S. Ikegami, Sol. Cells 11, 367 (1984).

    Article  CAS  Google Scholar 

  23. A. Kotta and H.-K. Seo, J. Nanoelectron. Optoelectron. 14, 895 (2019).

    Article  CAS  Google Scholar 

  24. M.B. Askari, M.M.A. Vahid, and M. Mohsen, Am. J. Opt. Photon. 3, 94 (2015).

    Article  Google Scholar 

  25. F.-D. Lai and Y.-S. Yan, Sci. Adv. Mater. 8, 1106 (2019).

    Article  CAS  Google Scholar 

  26. J. Peng, L. Lu, and H. Yang, Renew. Sustain. Energy Rev. 19, 255 (2013).

    Article  CAS  Google Scholar 

  27. V. Fthenakis and H.C. Kim, Renew. Sustain. Energy Rev. 14, 1465 (2010).

    Article  Google Scholar 

  28. A.M. Bagher, M.M.A. Vahid, and M. Mohsen, Am. J. Opt. Photon. 3, 94 (2015).

    Article  Google Scholar 

  29. A.M. Ali, K.S. Rahman, L.M. Ali, M. Akhtaruzzaman, K. Sopian, S. Radiman, and N. Amin, Res. Phys. 7, 1066 (2017).

    Google Scholar 

  30. H.T. Masood, S. Anwer, X. Wang, A. Ali, and W. Deliang, Optik, 224, 165505 (2020).

    Article  CAS  Google Scholar 

  31. K. Shen, X. Wang, Y. Zhang, H. Zhu, Z. Chen, C. Huang, and Y. Mai, Sol. Energy, 201, 55 (2020).

    Article  CAS  Google Scholar 

  32. I.-S. Jung, S.-H. Kang, S.-H. Lee, Y.-H. Song, J.-K. Yoon, J.-S. Park, J. Choi, and M.S. Akhtar, Sci. Adv. Mater. 11, 973 (2019).

    Article  CAS  Google Scholar 

  33. K.S. Gour, R. Parmar, R. Kumar, and V.N. Singh, J. Nanosci. Nanotechnol. 20, 3909 (2020).

    Article  CAS  Google Scholar 

  34. Z. Fan, and Q. Lin, Conference, the international society for optics and photonics: reducing reflection losses in solar cells (2014).

  35. K.H. Tsui, Q. Lin, H. Chou, Q. Zhang, H. Fu, P. Qi, and Z. Fan, Adv. Mater. 26, 2805 (2014)

    Article  CAS  Google Scholar 

  36. https://www.pveducation.org/pvcdrom/design-of-silicon-cells/anti-reflection-coatings.

  37. R. Sharma, A. Gupta, and A. Virdi, J. Nano-Electron. Phys. 9, 2 (2017).

    Article  CAS  Google Scholar 

  38. L.A. Dobrzański, M. Szindler, A. Drygała, and M.M. Szindler, Centr. Euro. J. Phys. 12, 666 (2014).

    Google Scholar 

  39. P.A. Basore, IEEE Trans. Electron Dev. 37, 337 (1990).

    Article  CAS  Google Scholar 

  40. D. A. Clugston, and P.A. Basore, in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference (pp. 207–210). IEEE (1997).

  41. D.K. Shah, R. Wagle, A. Shrivastava, and D. Parajuli, J. Adv. Res. Dyn. Control Syst. 12, 2878 (2020).

    Article  Google Scholar 

  42. L. Danos, T. Parel, T. Markvart, V. Barrioz, W.S.M. Brooks, and S.J.C. Irvine, Sol. Energy Mater. Sol. Cells. 98, 486 (2012).

  43. G. Womack, P.M. Kaminski, and J.M. Walls, Vacuum. 139, 196 (2017)

    Article  CAS  Google Scholar 

  44. G. Womack, P.M. Kaminski, A. Abbas, K. Isbilir, R. Gottschalg, and J.M. Walls, J. Vac. Sci. Technol. A 35, 021201 (2017).

    Article  CAS  Google Scholar 

  45. S. Banerjee, in Devices for Integrated Circuit (DevIC) (pp. 730–733). IEEE (2017).

  46. J. Jung, A. Jannat, M.S., Akhtar, and O.-B. Yang, J. Nanosci. Nanotechnol. 18, 1274 (2018).

    Article  CAS  Google Scholar 

  47. T.X. Zhang, L.G. Wang, J.J. Zhu, J.Y. Liu, and S.J. Guo, J. Nanoelectron. Optoelectron. 14, 227 (2019).

    Article  CAS  Google Scholar 

  48. S. Dogan, N. Töre, A. Karsli, E. Parlak, T. Altürk, and G.F. Serap, J. Nanoelectron. Optoelectron. 14, 8 (2019).

    Article  CAS  Google Scholar 

  49. D.K. Shah, D. KC, M.S. Akhtar, O-B Yang, and C.Y. Kim, Appl. Sci. 1017, 6062 (2020).

    Article  CAS  Google Scholar 

  50. J. Hossain, B.K. Mondal, and S.K Mostaque, Mater. Res. Express. 7, 015502 (2019).

    Article  CAS  Google Scholar 

  51. N. Thakur and R. Mehra, J. Nanoelectron. Optoelectron. 14, 217 (2019).

    Article  CAS  Google Scholar 

  52. H. Jee, J. Song, D. Moon, J. Lee, and C. Jeong, J. Nanosci. Nanotechnol. 20, 7096 (2020).

    Article  CAS  Google Scholar 

  53. J.C. Bernede, J. Chilean Chem. Soc. 53, 1549 (2008).

    Article  CAS  Google Scholar 

  54. R. Wagle, R. Gaib, A. Shrivastava, and L.N. Mishra, Am. J. Eng. Res. 9, 218 (2020).

    Google Scholar 

  55. S. Asahi, H. Teranishi, K. Kusaki, T. Kaizu and T.Kita, Nat. Commun. 8, 14962 (2017).

    Article  CAS  Google Scholar 

  56. M.K. Basher, M. K. Hossain, and M.A.R. Akand, Optik. 176, 93 (2019).

    Article  CAS  Google Scholar 

  57. E. Alarousu, A. M. El-Zohry, J. Yin, A. A. Zhumekenov, C. Yang, E. Alhabshi, I. Gereige, A. AlSaggaf, A.V. Malko, O.M. Bakr, and O.F. Mohammed, J. Phys. Chem. Lett. 8, 4386 (2017).

    Article  CAS  Google Scholar 

  58. Z.Z. Bandic, P.M. Bridger, E.C. Piquette and T.C. McGill, Appl. Phys. Lett. 73, 3166 (1998).

    Article  Google Scholar 

  59. X. Cai, X. Zhou, Z. Liu, F. Jiang, and Q. Yu, Optik. 164, 105 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper was supported by research funds of Jeonbuk National University in 2020. This work was funded by the Researchers Supporting Project No. RSP-2020/261, King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deb Kumar Shah or M. Shaheer Akhtar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KC, D., Shah, D.K., Alanazi, A.M. et al. Impact of Different Antireflection Layers on Cadmium Telluride (CdTe) Solar Cells: a PC1D Simulation Study. J. Electron. Mater. 50, 2199–2205 (2021). https://doi.org/10.1007/s11664-020-08696-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08696-5

Keywords

Navigation