Skip to main content
Log in

Comparison of Cu, Al, and Zr metallic contacts for chalcopyrite CIGS thin-film

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Glass/Mo/CIGS was produced by the physical vapor deposition method and its morphological and structural characterizations were performed. The forbidden band gap and electron affinity values of the CIGS material were calculated depending on the element ratio of the EDS result obtained for CIGS thin films. The current–voltage (I–V) measurements of Cu/CIGS/Mo, Al/CIGS/Mo, and Zr/CIGS/Mo structures were taken at room temperature. While the Cu/CIGS structure exhibited ohmic behavior, rectifying behavior was observed for Al and Zr contacts. The zero-bias barrier height values for Al/p-CIGS and Zr/p-CIGS devices were calculated as 0.78 and 0.72 eV, respectively. The barrier heights determined from the experimental I−V measurements were lower than the barrier heights calculated using the Schottky–Mott model. When the contact characteristics of Al/CIGS and Zr/CIGS Schottky diodes were compared, Al performed better than Zr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. E. Schlenker, V. Mertens, J. Parisi, R. Reineke-Koch, M. Köntges, Phys. Lett. Sect. A Gen. At. Solid State Phys. 362, 229 (2007)

    CAS  Google Scholar 

  2. A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, B. Abay, Phys. B Condens. Matter. 205, 41 (1995)

    Article  CAS  Google Scholar 

  3. D.A. Aldemir, M. Kaleli, A.C. Yavru, Sens. Actuators A Phys. 311, 112091 (2020)

    Article  CAS  Google Scholar 

  4. L. Ye, H. Li, Z. Chen, J. Xu, ACS Photonics 3, 692 (2016)

    Article  CAS  Google Scholar 

  5. A. Fernández-Pérez, C. Navarrete, R. Muñoz, E. Baradit, M. Saavedra, G. Cabello-Guzmán, W. Gacitúa, Mater. Res. Express 8, 016408 (2021)

    Article  Google Scholar 

  6. R.E.I. Schropp, R. Carius, G. Beaucarne, MRS Bull. 32, 219 (2007)

    Article  CAS  Google Scholar 

  7. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, Phys. Status Solidi–Rapid Res. Lett. 10, 583 (2016)

    Article  CAS  Google Scholar 

  8. A. Guchhait, H.A. Dewi, S.W. Leow, H. Wang, G. Han, F. bin Suhaimi, S. Mhaisalkar, L.H. Wong, N. Mathews, ACS Energy Lett. 2, 807 (2017)

    Article  CAS  Google Scholar 

  9. S. Gharibzadeh, I.M. Hossain, P. Fassl, B.A. Nejand, T. Abzieher, M. Schultes, E. Ahlswede, P. Jackson, M. Powalla, S. Schäfer, M. Rienäcker, T. Wietler, R. Peibst, U. Lemmer, B.S. Richards, U.W. Paetzold, Adv. Funct. Mater. 30, 1909919 (2020)

    Article  CAS  Google Scholar 

  10. H. Shen, T. Duong, J. Peng, D. Jacobs, N. Wu, J. Gong, Y. Wu, S.K. Karuturi, X. Fu, K. Weber, X. Xiao, T.P. White, K. Catchpole, Energy Environ. Sci. 11, 394 (2018)

    Article  CAS  Google Scholar 

  11. I.L. Repins, D. Fisher, W.K. Batchelor, L. Woods, M.E. Beck, Prog. Photovolt. Res. Appl. 13, 311 (2005)

    Article  CAS  Google Scholar 

  12. J. Ramanujam, D.M. Bishop, T.K. Todorov, O. Gunawan, J. Rath, R. Nekovei, E. Artegiani, A. Romeo, Prog. Mater. Sci. (2020). https://doi.org/10.1016/j.pmatsci.2019.100619

    Article  Google Scholar 

  13. T. Winkler, S. Kreher, in AIMCAL Web Coating and Handling Conference (2012)

  14. S. Ishizuka, A. Yamada, K. Matsubara, P. Fons, K. Sakurai, S. Niki, Curr. Appl. Phys. 10, S154 (2010)

    Article  Google Scholar 

  15. M. Kaleli, C. Alp Yavru, J. Mater. Sci. Mater. Electron. 30, 20154 (2019)

    Article  CAS  Google Scholar 

  16. S. Gagui, B. Hadjoudja, B. Chouial, B. Zaidi, Y. Kouhlane, N. Benslim, A. Chibani, J. Optoelectron. Adv. Mater. 17, 670 (2015)

    CAS  Google Scholar 

  17. J.H. Kim, H. Han, M.K. Kim, J. Ahn, D.K. Hwang, T.J. Shin, B.K. Min, J.A. Lim, Sci. Rep. 11, 7820 (2021)

    Article  CAS  Google Scholar 

  18. S.H. Kang, Y.K. Kim, D.S. Choi, Y.E. Sung, Electrochim. Acta 51, 4433 (2006)

    Article  CAS  Google Scholar 

  19. S. Fiat, I. Polat, E. Bacaksiz, M. Kompitsas, G. Çankaya, Curr. Appl. Phys. 13, 1112 (2013)

    Article  Google Scholar 

  20. B. Theys, T. Klinkert, F. Mollica, E. Leite, F. Donsanti, M. Jubault, D. Lincot, Phys. Status Solidi (A) Appl. Mater. Sci. 213, 2425 (2016)

    Article  CAS  Google Scholar 

  21. B.S. Yadav, A.C. Badgujar, S.R. Dhage, Sol. Energy 157, 507 (2017)

    Article  CAS  Google Scholar 

  22. S. Samikannu, S. Sivaraj, Opt. Eng. 55, 081311 (2016)

    Article  Google Scholar 

  23. R. Krishnan, M. Riley, S. Lee, T.M. Lu, Thin Solid Films 519, 5429 (2011)

    Article  CAS  Google Scholar 

  24. M.L. Lobanov, Sv. Danilov, V.I. Pastukhov, S.A. Averin, Y.Y. Khrunyk, A.A. Popov, Mater. Des. 109, 251 (2016)

    Article  CAS  Google Scholar 

  25. J.H. Yoon, K.H. Yoon, J.K. Kim, W.M. Kim, J.K. Park, T.S. Lee, Y.J. Baik, T.Y. Seong, J.H. Jeong, in Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 2443–2447 (2010)

  26. G. Gordillo, M. Grizález, L.C. Hernandez, Sol. Energy Mater. Sol. Cells 51, 327 (1998)

    Article  CAS  Google Scholar 

  27. N. Mufti, T. Amrillah, A. Taufiq, Sunaryono, Aripriharta, M. Diantoro, Zulhadjri, H. Nur, Sol. Energy 207, 1146 (2020)

    Article  CAS  Google Scholar 

  28. L.M. Mansfield, R.L. Garris, K.D. Counts, J.R. Sites, C.P. Thompson, W.N. Shafarman, K. Ramanathan, IEEE J. Photovolt. 7, 286 (2016)

    Article  Google Scholar 

  29. K.H. Ong, R. Agileswari, B. Maniscalco, P. Arnou, C.C. Kumar, J.W. Bowers, M.B. Marsadek, Int. J. Photoenergy (2018). https://doi.org/10.1155/2018/9106269

    Article  Google Scholar 

  30. Y. Kouhlane, B. Chouial, S. Gagui, B. Hadjoudja, A. Chibani, Indian J. Phys. 88, 471 (2014)

    Article  CAS  Google Scholar 

  31. B.-Q. Fu, W. Liu, Z.-L. Li, Appl. Surf. Sci. 255, 8511 (2009)

    Article  CAS  Google Scholar 

  32. B. Peace, J. Claypoole, N. Sun, D. Dwyer, M.D. Eisaman, P. Haldar, H. Efstathiadis, J. Alloys Compd. 657, 873 (2016)

    Article  CAS  Google Scholar 

  33. E. Ghanbari, M. Zahedifar, M. Moradi, Appl. Phys. A Mater. Sci. Process. 125, 1–9 (2019)

    Article  Google Scholar 

  34. N. Khoshsirat, N.A. Md Yunus, M.N. Hamidon, S. Shafie, N. Amin, Optik (Stuttg) 126, 681 (2015)

    Article  CAS  Google Scholar 

  35. Av. Mudryi, V.F. Gremenok, Av. Karotki, V.B. Zalesski, M. Yakushev, F. Luckert, R. Martin, J. Appl. Spectrosc. 77, 371 (2010)

    Article  CAS  Google Scholar 

  36. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Phys. Status Solidi B Basic Res. 252, 1700 (2015)

    Article  CAS  Google Scholar 

  37. A. Belghachi, N. Limam, Chin. J. Phys. 55, 1127 (2017)

    Article  CAS  Google Scholar 

  38. G. Çankaya, N. Uçar, Z. Für Naturforschung A 59, 795 (2004)

    Article  Google Scholar 

  39. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)

    Article  CAS  Google Scholar 

  40. A. Sylla, N.A. Ignace, T. Siaka, J.-P. Vilcot, Open J. Modelling Simul. 09, 339 (2021)

    Article  Google Scholar 

  41. E.H. Rhoderick, R.H. Williams, Metal–Semiconductor Contacts, 2nd edn. (Oxford: Clarendon Press, Cambridge, 1988)

    Google Scholar 

  42. Z. Rajabi, M. Moradi, M. Zahedifar, Mater. Res. Express 6, 065501 (2019)

    Article  CAS  Google Scholar 

  43. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  44. A.G. Al-Sehemi, A. Karabulut, A. Dere, A.A. Al-Ghamdi, F. Yakuphanoglu, Surf. Interfaces (2022). https://doi.org/10.1016/j.surfin.2022.101802

    Article  Google Scholar 

  45. R.T. Tung, Phys. Rev. Lett. 84, 6078 (2000)

    Article  CAS  Google Scholar 

  46. J. Bardeen, Phys. Rev. 71, 717 (1947)

    Article  Google Scholar 

  47. R.R. Lieten, S. Degroote, M. Kuijk, G. Borghs, Appl. Phys. Lett. 92, 022106 (2008). https://doi.org/10.1063/1.2831918

    Article  CAS  Google Scholar 

Download references

Funding

We thanks to Council of Higher Education (Yükseköğretim Kurulu, YÖK) for supported to Celal Alp Yavru (one of the authors of this article) under 100/2000 Ph.D. scholarship program. We also thank the BAP-4905-YL1-17 project of the Süleyman Demirel University Scientific Research Projects Coordination Unit.

Author information

Authors and Affiliations

Authors

Contributions

CAY: Contributed to the experimentation, data analysis, collation, and manuscript preparation. MK: Contributed to the methodology, data analysis and theorization. SAA: Contributed to the investigation and experimentation İSÜ: Contributed to the theorization. DAA: Contributed to writing, reviewing, and editing.

Corresponding author

Correspondence to Celal Alp Yavru.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yavru, C.A., Kaleli, M., Üncü, İ.S. et al. Comparison of Cu, Al, and Zr metallic contacts for chalcopyrite CIGS thin-film. J Mater Sci: Mater Electron 34, 1176 (2023). https://doi.org/10.1007/s10854-023-10585-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10585-6

Navigation