Skip to main content

Advertisement

Log in

SnO2 nanospheres and V2O5/SnO2 nanoparticles with mesoporous structures for flexible asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Carbon fibers’ textile (CFT)-based flexible electrodes containing a large number of SnO2 nanospheres and V2O5/SnO2 nanoparticles were obtained by a facile one-pot template method. The homogeneously distributed SnO2 and V2O5/SnO2 exhibit an optimized worm-like mesoporous skeleton and an ideal pore size distribution with a highest surface area of around 295.5 m2·g−1 and 198.0 m2·g−1, respectively. Using the mesoporous transition/mixed transition metal oxide nanomaterials simultaneously as both positive and negative electrodes, a solid-state flexible asymmetric supercapacitor was fabricated with the V2O5/SnO2@CFT as the positive electrode and SnO2@CFT as the negative electrode with well-widened voltage windows. Benefiting from the 3D controllable mesoporous architecture of electroactive species, the assembled supercapacitors delivered a high specific capacitance of 151.3 F·g−1 at 1 A·g−1, and good rate stability with 70.9% capacitance retention at a higher current density of 5 A·g−1. Notably, the device can operate in a wide voltage window (0~1.6 V), which enhance substantially the energy density to 193.6 Wh·kg−1 at a power density of 2880 W·kg−1. These encouraging results are expected to open up a possibility of designing and fabricating the other metal oxide nanomaterials with mesoporous structure and uniform morphology for high-performance supercapacitors and other energy storage devices application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Y. Al Haj, S. Mousavihashemi, D. Robertson, M. Borghei, T. Paakkonen, O.J. Rojas, E. Kontturi, T. Kallio, J. Vapaavuori, Chem. Eng. J. 435, 135058 (2022)

    Article  CAS  Google Scholar 

  2. P.Z. Wang, Z.T. Meng, X.X. Wang, Z.H. Zhao, Y.H. Wang, F.Y. Quan, W.L. Tian, C. Yang, K.W. Zhang, Y.Z. Xia, J. Mater. Chem. A 16, 8948–8957 (2022)

    Article  Google Scholar 

  3. M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Science 335467, 1326–1330 (2012)

    Article  Google Scholar 

  4. K.S. Shanmugasundaram, P. Hari, G. Ilana, Aharon. ACS Appl. Mater. Interfaces 14, 18570–18577 (2022)

    Google Scholar 

  5. M.B. Abdolahi, M. Gholivand, M. Shamsipur, J. Amiri, Alloy. Compd. 905, 164185 (2022)

    Article  CAS  Google Scholar 

  6. X.C. Hao, Z.Y. Hao, F.D. Zeng, J. Xu, H.S. Nan, Z.S. Meng, J. Yang, W. Shi, Y. Zeng, X.Y. Hu, H.W. Tian, J. Colloid Interf. Sci. 610, 601–609 (2022)

    Article  Google Scholar 

  7. Y. Han, Y.Z. Lu, S.H. Shen, Y. Zhong, S. Liu, X.H. Xia, Y.X. Tong, X.H. Lu, Adv. Funct. Mater. 29, 1806329 (2019)

    Article  Google Scholar 

  8. P. Zhao, N. Wang, M.Q. Yao, H.B. Ren, W.C. Hu, Chem. Eng. J. 380, 122488 (2020)

    Article  CAS  Google Scholar 

  9. Y.H. Li, L.X. Li, F.Y. Du, Electrochim. Acta 434, 141326 (2022)

    Article  CAS  Google Scholar 

  10. S. Kour, S. Tanwar, A.L. Sharma, J. Alloys Compd. 910, 164834 (2022)

    Article  CAS  Google Scholar 

  11. Y.L. Wang, D.W. Gu, J.R. Guo, M.Y. Xu, H.S. Sun, J.S. Li, L. Wang, L.J. Shen, ChemElectroChem 7, 928–936 (2022)

    Article  Google Scholar 

  12. X.L. Li, X.K. Wang, G. Liu, X.Y. Sui, Q.F. Wu, X.G. Wang, X.L. Lv, E.Q. Xie, Z.X. Zhang, Chem. Eng. J. 452, 139140 (2023)

    Article  CAS  Google Scholar 

  13. J. Yan, Q. Wang, T. Wei, Z.J. Fan, Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  14. N. Kitchamsetti, D. Kim, J. Mater. Res. Technol 21, 590–603 (2022)

    Article  CAS  Google Scholar 

  15. E. Samuel, T.G. Kim, C.W. Park, B. Joshi, M.T. Swihart, S.S. Yoon, ACS Sustain Chem. Eng. 7, 14031–14040 (2019)

    Article  CAS  Google Scholar 

  16. C.Y. Peng, M.M. Jin, D. Han, X. Liu, L.F. Lai, Mater. Lett. 320, 132391 (2022)

    Article  CAS  Google Scholar 

  17. W.C. Bi, J.C. Wang, E.P. Jahrman, G.T. Seidler, G.H. Gao, G.M. Wu, G.Z. Cao, Small 15, 1901747 (2019)

    Article  Google Scholar 

  18. P. Asen, M. Haghighi, S. Shahrokhian, N. Taghavinia, J. Alloy. Compd. 782, 38–50 (2019)

    Article  CAS  Google Scholar 

  19. M. Ghosh, V. Vijayakumar, R. Soni, S. Kurungot, Nanoscale 10, 8741–8751 (2018)

    Article  CAS  Google Scholar 

  20. K. Kannagi, Appl. Surf. Sci. 456, 13–18 (2018)

    Article  CAS  Google Scholar 

  21. Y.R. Kang, Z. Li, K. Xu, X.J. He, S.X. Wei, Y.M. Cao, J. Alloy. Compd. 779, 728–734 (2019)

    Article  CAS  Google Scholar 

  22. H.J. Huang, X. Wang, E. Tervoort, G.B. Zeng, T. Liu, X. Chen, ACS Nano 12, 2753–2763 (2018)

    Article  CAS  Google Scholar 

  23. Q.R. Zhuang, W.Z. Li, Z.T. Zhu, H. Yu, W. Chen, J. Yang, M. Fu, J. Alloys Compd. 906, 164275 (2022)

    Article  CAS  Google Scholar 

  24. X. Liu, C.F. Liu, S.H. Xu, T. Cheng, S. Wang, W.Y. Lai, W. Huang, Chem. Soc. Rev. 51, 3181–3225 (2022)

    Article  CAS  Google Scholar 

  25. J.R. Li, K.P. Zhuang, Y.F. Mao, C. Liu, M.H. Pang, H.G. Li, Carbon 201, 449–459 (2023)

    Article  CAS  Google Scholar 

  26. R.B. Ambade, H. Lee, K.H. Lee, H. Lee, G.K. Veerasubramani, Y.-B. Kim, T.H. Han, Chem. Eng. J. 436, 135041 (2022)

    Article  CAS  Google Scholar 

  27. Y.T. Qiu, Z.X. Wang, M.M. Jin, J.K. Chen, C.Y. Miao, S.M. Zhang, L.F. Lai, Electrochim. Acta 424, 140622 (2022)

    Article  CAS  Google Scholar 

  28. Y. Zhao, S.C. Wang, F. Ye, W.J. Liu, J.B. Lian, G.C. Li, H.T. Wang, L.F. Hu, L.M. Wu, J. Mater. Chem. A 10, 16212–16223 (2022)

    Article  CAS  Google Scholar 

  29. R.M. Usha, N. Vangapally, D. Devarakonda, M. Sadananda, M.S. Kumar, D.A. Suresh, Electrochim. Acta 365, 137284 (2021)

    Article  Google Scholar 

  30. R. Manikandan, C.J. Raj, G. Nagaraju, J. Puigdollers, C. Voz, K.B.A. Chul, Adv. Funct. Mater. 29, 1906586 (2019)

    Google Scholar 

  31. J.E. Li, Y.W. Wang, W.N. Xu, Y. Wang, B. Zhang, S. Luo, X.Y. Zhou, C.L. Zhang, X. Gu, C.G. Hu, Nano Energy 57, 379–387 (2019)

    Article  CAS  Google Scholar 

  32. X. Zhou, Q. Chen, A.Q. Wang, J. Xu, S.S. Wu, J. Shen, A.C.S. Appl, Mater. Interfaces 8, 3776–3783 (2016)

    Article  CAS  Google Scholar 

  33. L. Wang, G.R. Duan, S.M. Chen, X.H. Liu, Ind. Eng. Chem. Res. 54, 12580–12586 (2015)

    Article  CAS  Google Scholar 

  34. M. Petr, P. Jakubec, V. Ranc, V. Šedajová, R. Langer, M. Medveď, P. Błoński, J. Kašlík, V. Kupka, M. Otyepka, R. Zbořil, Nanoscale 11, 21364–21375 (2019)

    Article  CAS  Google Scholar 

  35. H. Jeon, J. Jeong, S.B. Hong, M. Yang, J. Park, D.H. Kim, S.Y. Hwang, B.G. Choi, Electrochimi. Acta 280, 9–16 (2018)

    Article  CAS  Google Scholar 

  36. J. Yan, C.E. Ren, K. Maleski, C.B. Hatter, B. Anasori, P. Urbankowski, A. Sarycheva, Y. Gogotsi, Adv. Funct. Mater. 27, 1701264 (2017)

    Article  Google Scholar 

  37. H.L. Wang, X.H. Liu, X. Wang, X.J. Yang, L.D. Lu, Mater. Sci. Eng. A 193, 435–436 (2006)

    Google Scholar 

  38. H. Xia, C.Y. Hong, B. Li, B. Zhao, Z.X. Lin, M.B. Zheng, S.V. Savilov, S.M. Aldoshin, Adv. Funct. Mater. 25, 627–635 (2015)

    Article  CAS  Google Scholar 

  39. S. Korkmaz, F.M. Tezel, İA. Kariper, Synthetic Met. 242, 37–48 (2018)

    Article  CAS  Google Scholar 

  40. Y.M. Dai, S.C. Tang, J.Q. Peng, H.Y. Chen, Z.X. Ba, Y.J. Ma, X.K. Meng, Mater. Lett. 130, 107–110 (2014)

    Article  CAS  Google Scholar 

  41. Y. Wang, J. Cao, J.H. Guo, J.L. Zhang, G.S. Liu, D. Wang, W.M. Sia, J. Song, X.X. Meng, G.W. Wen, J. Alloys Compd. 915, 165418 (2022)

    Article  CAS  Google Scholar 

  42. K. Kanwal, B. Ismail, K.S. Rajani, N.J.S. Kissinger, A. Zeb, J. Electro. Mater. 46, 4206–4213 (2017)

    Article  CAS  Google Scholar 

  43. Y.D. Zhang, Z.G. Hu, Y.R. Liang, Y.Y. Yang, N. An, Z.M. Li, H.Y. Wu, J. Mater. Chem. A 3, 15057–15067 (2015)

    Article  CAS  Google Scholar 

  44. L. Wang, M. Arif, G.R. Duan, S.M. Chen, X.H. Liu, J. Power Sources 355, 53–61 (2017)

    Article  CAS  Google Scholar 

  45. S. Pillai, K.O. Gheevarghese, S. Sugunan, Appl. Catal. A 353, 130–136 (2009)

    Article  CAS  Google Scholar 

  46. H.Y. Li, C. Wei, Z.W. Peng, B. Xie, Mater. Lett. 220, 12–15 (2018)

    Article  CAS  Google Scholar 

  47. W.C. Bi, E. Jahrman, G. Seidler, J.C. Wang, G.H. Gao, G.M. Wu, M. Atif, M. AlSalhi, G.Z. Cao, A.C.S. Appl, Mater. Interfaces 11, 16647–16655 (2019)

    Article  CAS  Google Scholar 

  48. A.D. Adhikari, R.S. Oraon, K. Tiwari, P. Saren, C.K. Maity, J.H. Lee, N.H. Kim, G.C. Nayak, New J. Chem. 42, 955–963 (2018)

    Article  CAS  Google Scholar 

  49. R. Narayanan, A. Dewan, D. Chakraborty, RSC Adv. 8, 8596–8606 (2018)

    Article  CAS  Google Scholar 

  50. L.L. Xing, G.G. Zhao, K.J. Huang, X. Wu, Dalton Trans. 47, 2256–2265 (2018)

    Article  CAS  Google Scholar 

  51. M. Govindasamy, S. Shanthi, E. Elaiyappillai, S.F. Wang, P.M. Johnson, H. Ikeda, Y. Hayakawa, S. Ponnusamy, C. Muthamizhchelvan, Electrochim. Acta 293, 328–337 (2019)

    Article  CAS  Google Scholar 

  52. S.R. Indhumathi, M.M. Cristopher, P. Karthick, M.D. Pushpa, B. Poornima, C. Gopalakrishnan, K. Jeyadheepan, Mat. Sci. Semicon. Proc. 100, 185–191 (2019)

    Article  CAS  Google Scholar 

  53. N.R. Lashari, M.S. Zhao, Q.Y. Zheng, H.L. Gong, W.Y. Duan, T. Xu, F. Wang, X.P. Song, Electrochim. Acta 314, 115–123 (2019)

    Article  CAS  Google Scholar 

  54. M. Sahoo, S. Ramaprabhu, Carbon 127, 627–635 (2018)

    Article  CAS  Google Scholar 

  55. H.Y. Zhang, Y.L. Rong, W. Jia, H. Chai, Y.L. Cao, J. Alloy. Compd. 802, 139–145 (2019)

    Article  CAS  Google Scholar 

  56. Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X.Q. Sun, X.X. Liu, ACS Nano 12, 3557–3567 (2018)

    Article  CAS  Google Scholar 

  57. J. Zhang, J.B. Sun, T.A. Shifa, D. Wang, X.F. Wu, Y.B. Cui, Chem. Eng. J. 372, 1047–1055 (2019)

    Article  CAS  Google Scholar 

  58. Z. He, Xu. Yang, Y. Li, Z. Tian, M. Wang, Mater. Today Commun. 33, 104398 (2022)

    Article  CAS  Google Scholar 

  59. L.F. Sang, G.G. Xu, Z.W. Chen, X.Z. Wang, H.Z. Cui, G.Y. Zhang, Y.J. Dou, Mat. Sci. Semicon. Proc. 105, 104710 (2020)

    Article  CAS  Google Scholar 

  60. K.S.W. Sing, IUPAC 4, 603–619 (1985)

    Google Scholar 

  61. L. Shang, H.J. Yu, X.G. Huang, T. Bian, R. Shi, Y.F. Zhao, G.I.N. Waterhouse, L.Z. Wu, C.H. Tung, T.R. Zhang, Adv. Mater. 28, 1668–1674 (2016)

    Article  CAS  Google Scholar 

  62. E.J.W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J.A. Alexander-Webber, H.J. Snaith, Nature 495, 215–219 (2013)

    Article  CAS  Google Scholar 

  63. B. You, J. Yang, Y.Q. Sun, Q.D. Su, Chem. Commun. 47, 12364–12366 (2011)

    Article  CAS  Google Scholar 

  64. Y.Y. Li, R.Y. Wu, M. Yang, H. Yu, Y. Yang, X.T. Dong, J. Alloys Compd. 906, 164315 (2022)

    Article  CAS  Google Scholar 

  65. D. Wang, L. Tian, H.J. Li, K. Wan, X. Yu, P. Wang, A.Y. Chen, X.Y. Wang, J.H. Yang, A.C.S. Appl, Mater. Interfaces 11, 12808–12818 (2019)

    Article  CAS  Google Scholar 

  66. N. Han, Y.Y. Wang, J. Deng, J.H. Zhou, Y.L. Wu, H. Yang, P. Ding, Y.G. Li, J. Mater. Chem. A 7, 1267–1272 (2019)

    Article  CAS  Google Scholar 

  67. B.X. Feng, Y. Wu, Y. Ren, Y.Q. Chen, K.P. Yuan, Y.H. Deng, J. Wei, Sensor. Actuat. B 356, 131358 (2022)

    Article  CAS  Google Scholar 

  68. X.J. Zhou, S.F. Cao, H.Z. Li, H.B. Guo, Y.G. Chen, J. Nanopart Res. 23, 110 (2021)

    Article  Google Scholar 

  69. Z.H. Wang, Y. Long, D. Cao, D.M. Han, F.B. Gu, Electrochim. Acta 307, 341–350 (2019)

    Article  CAS  Google Scholar 

  70. N.S. Lopa, M.K. Akbari, S. Zhuiykov, Electrochim. Acta 434, 141322 (2022)

    Article  CAS  Google Scholar 

  71. X.W. Li, S.L. Xiong, J.F. Li, J. Bai, Y.T. Qian, J. Mater. Chem. 22, 14276–14283 (2012)

    Article  CAS  Google Scholar 

  72. U. Nithiyanantham, A. Ramadoss, S. Kundu, Dalton Trans. 45, 3506–3521 (2016)

    Article  CAS  Google Scholar 

  73. A.A. Yadav, J. Mater. Sci. 27, 1866–1872 (2016)

    CAS  Google Scholar 

  74. A.S. Abou-Elyazed, S. Hassan, A.G. Ashry, M. Hegazy, ACS Omega 7, 19714–19720 (2022)

    Article  CAS  Google Scholar 

  75. M.Y. Chuai, X. Chen, K.W. Zhang, J. Zhang, M.Z. Zhang, J. Mater. Chem. A 7, 1160–1167 (2019)

    Article  CAS  Google Scholar 

  76. C.L. Su, X. Yang, J.N. Li, Q.H. Yu, Y.L. Huang, H.Q. Shao, G.W. Shao, J.H. Jiang, N.L. Chen, A.C.S. Appl, Energy Mater. 5, 8472–8482 (2022)

    CAS  Google Scholar 

  77. V.K. Mariappana, K. Krishnamoorthy, P. Pazhamalai, S.S. Sahoo, S. Nardekar, S.J. Kim, Nano Energy 57, 307–316 (2019)

    Article  Google Scholar 

  78. Y.H. Zhao, X.Y. He, R.R. Chen, Q. Liu, J.Y. Liu, J. Yu, J.Q. Li, H.S. Zhang, H.X. Dong, M.L. Zhang, J. Wang, Chem. Eng. J. 352, 29–38 (2018)

    Article  CAS  Google Scholar 

  79. S.S. Pan, L. Chen, Y.H. Li, S.L. Han, L. Wang, G.J. Shao, RSC Adv. 8, 3213–3217 (2018)

    Article  CAS  Google Scholar 

  80. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484–4490 (2012)

    Article  CAS  Google Scholar 

  81. R. Velmurugan, J. Premkumar, R. Pitchai, M. Ulaganathan, B. Subramanian, ACS Sustain Chem. Eng. 7, 13115–13126 (2019)

    Article  CAS  Google Scholar 

  82. T. Brousse, D. Bélanger, J.W. Long, J. Electrochem. Soc. 162, A5185–A5189 (2015)

    Article  CAS  Google Scholar 

  83. Q. Jiang, N. Kurra, M. Alhabeb, Y. Gogotsi, H.N. Alshareef, Adv. Energy Mater. 8, 1703043 (2018)

    Article  Google Scholar 

  84. Z.M. Shen, X.J. Luo, Y.Y. Zhu, Y.S. Liu, J. Energy Storage 51, 104475 (2022)

    Article  Google Scholar 

  85. S. Balasubramanian, K.K. Purushothaman, Electrochim. Acta 186, 285–291 (2015)

    Article  CAS  Google Scholar 

  86. J.B. Wu, X. Gao, H.M. Yu, T.P. Ding, Y.X. Yan, B. Yao, X. Yao, D.C. Chen, M.L. Liu, L. Huang, Adv. Funct. Mater. 26, 6114–6120 (2016)

    Article  CAS  Google Scholar 

  87. F. Azadian, A.C. Rastogi, J. Solid State Electr. (2022). https://doi.org/10.1007/s10008-022-05309-5

    Article  Google Scholar 

  88. Y.M. Wang, X. Wang, X.F. Li, X.L. Li, Y. Liu, Y. Bai, H.H. Xiao, G.H. Yuan, Adv. Funct. Mater. 31, 2008185 (2020)

    Article  Google Scholar 

  89. A. Izadi-Najafabadi, S. Yasuda, K. Kobashi, T. Yamada, D.N. Futaba, H. Hatori, M. Yumura, S. Iijima, K. Hata, Adv. Mater. 22, E235–E241 (2010)

    Article  CAS  Google Scholar 

  90. J.S. Asaithambi, P. Sakthivel, M. Karuppaiah, R. Yuvakkumar, K. Balamurugan, T. Ahamad, M.A.M. Khan, G. Ramalingam, M.K.A. Mohammed, G. Ravi, Energy Storage 36, 102402 (2022)

    Article  Google Scholar 

  91. M. Tian, R.H. Li, C.F. Liu, D.H. Long, G.Z. Cao, A.C.S. Appl, Mater. Interfaces 11, 15573–15580 (2019)

    Article  CAS  Google Scholar 

  92. H. Zhang, X.R. Han, R. Gan, Z.X. Guo, Y.H. Ni, L.A. Zhang, Appl. Surf. Sci. 511, 145527 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (No. 21771004) and Natural Science Foundation of Anhui Province (No. 1908085MB32).

Funding

National Natural Science Foundation of China, 21771004, Ying-Hua Zhou. Natural Science Foundation of Anhui Province, 1908085MB32, Lu Wang.

Author information

Authors and Affiliations

Authors

Contributions

LW: Conceptualization, Funding acquisition, Methodology, Data curation, Writing–original draft. YHZ: Funding acquisition, Resources. XL: Funding acquisition. The authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Lu Wang or Xiaoheng Liu.

Ethics declarations

Conflict of interests

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1586 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhou, YH. & Liu, X. SnO2 nanospheres and V2O5/SnO2 nanoparticles with mesoporous structures for flexible asymmetric supercapacitors. J Mater Sci: Mater Electron 34, 935 (2023). https://doi.org/10.1007/s10854-023-10323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10323-y

Navigation