Skip to main content
Log in

The effect of polyethylene-based nano-montmorillonite composite interfaces on charge transport

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polymer composites have promising applications, and the composite interface structure is one of the main influencing factors in determining their performance. This paper selected two kinds of Montmorillonite (MMT) treated with different modification means and Polyethylene (PE) melt blended to prepare polyethylene-based nanocomposites with different interfacial structures to test their space charge, insulation conductivity, and dielectric spectrum to analyze the effect of varying nanocomposite interfaces on charge transport properties. The results show that the composites incorporating Organic treatment of montmorillonite (O-MMT) significantly improve space charge aggregation and introduce more traps to inhibit carrier migration. In contrast, the samples containing surface-modified O-MMT (S-O-MMT) are more capable of inhibiting space charge injection and introducing deep traps, resulting in higher insulation properties of the composites. The nanoparticles modified by different surface modification methods have other interfacial structures, and the mechanism of nano-interfacial influence on charge transport of the composites is analyzed using the construction of a model of the role of composite interfaces in polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Y. Cheng, G. Yu, Z.J.P. Duan, Effect of cooling medium on LDPE dielectric properties. Polymers 14(3), 425 (2022)

    Article  CAS  Google Scholar 

  2. S. Bhalerao, N. Ambhore, M.J.B.R.A.C. Kadam, Polymer matrix composite in high voltage applications: a review. Biointerface Res. Appl. Chem. 12(6), 8343–8352 (2022)

    CAS  Google Scholar 

  3. O. Fares, F. AL-Oqla, M.JJo.I.T. Hayajneh, Revealing the intrinsic dielectric properties of mediterranean green fiber composites for sustainable functional products. J. Ind. Text. 51, 7732–7754 (2022)

    Article  Google Scholar 

  4. B.X. Du, C. Han, J. Li, Z. Li, Effect of voltage stabilizers on the space charge behavior of XLPE for HVDC cable application. IEEE Trans. Dielectr. Electr. Insul. 26(1), 34–42 (2019)

    Article  CAS  Google Scholar 

  5. B. Dang, J. He, J. Hu, Y.J.P.I. Zhou, Large improvement in trap level and space charge distribution of polypropylene by enhancing the crystalline–amorphous interface effect in blends. Polym. Int. 65(4), 371–379 (2016)

    Article  CAS  Google Scholar 

  6. H. Hirte, S. Kornhuber, S. Braun, P. Werle, editors. Review on space charge induced aging and voltage endurance tests of polymeric insulating materials under high DC voltage. 2022 International Conference on Diagnostics in Electrical Engineering (Diagnostika); 2022: IEEE.

  7. L. Li, X. Dai, Y. Li, S. Zhou, H. Liu, Y. Ma et al., Physicochemical, mechanical and electrical properties of epoxy-based syntactic foam under thermal and hydrothermal aging conditions. Mater. Today Commun. 33, 104717 (2022)

    Article  CAS  Google Scholar 

  8. Z. Li, B. Du, Polymeric insulation for high-voltage DC extruded cables: challenges and development directions. IEEE Electr. Insul. Mag. 34(6), 30–43 (2018)

    Article  Google Scholar 

  9. X. Huang, B. Sun, C. Yu, J. Wu, J. Zhang, P.J.H.V. Jiang, Highly conductive polymer nanocomposites for emerging high voltage power cable shields: experiment, simulation and applications. High Voltage 5(4), 387–396 (2020)

    Article  Google Scholar 

  10. M. Gao, J. Yang, H. Zhao, H. He, M. Hu, S.J.P. Xie, Preparation methods of polypropylene/nano-silica/styrene-ethylene-butylene-styrene composite and its effect on electrical properties. Polymers 11(5), 797 (2019)

    Article  CAS  Google Scholar 

  11. G. Yu, Y.J.C. Cheng, Effects of inorganic ZnO particle doping on crystalline polymer morphology and space charge behavior. Coatings 10(10), 932 (2020)

    Article  CAS  Google Scholar 

  12. Y. Zhou, J. Hu, B. Dang, J.J.R.A. He, Titanium oxide nanoparticle increases shallow traps to suppress space charge accumulation in polypropylene dielectrics. RSC Adv. 6(54), 48720–48727 (2016)

    Article  CAS  Google Scholar 

  13. Q. Wang, C. Wu, A.M. LaChance, J. Zhou, Y. Gao, Y. Zhang et al., Interfacial polarization suppression of P (VDF-HFP) film through 2D montmorillonite nanosheets coating. Progr. Org. Coatings. 172, 107119 (2022)

    Article  CAS  Google Scholar 

  14. H. Jiang, J. Gao, X. Zhang, N.J.P. Guo, Composite micro-nanoarchitectonics of MMT-SiO2: space charge characteristics under tensile state. Polymers 13(24), 4354 (2021)

    Article  CAS  Google Scholar 

  15. X. Zhang, Z. Shi, L. Ma, J. Gao, N. Guo, Enhanced breakdown strength and electrical tree resistance properties of MMT/SiO2/LDPE multielement composites. J. Appl. Polym. Sci. 136(17), 47364 (2019)

    Article  Google Scholar 

  16. J. Hu, X. Zhao, J. Xie, Y. Liu, S. Sun, Influence of organic Na+-MMT on the dielectric and energy storage properties of maleic anhydride-functionalized polypropylene nanocomposites. J. Polym. Res. 29(5), 1–9 (2022)

    Article  Google Scholar 

  17. R. Liao, G. Bai, L. Yang, H. Cheng, Y. Yuan, J. Guan, Improved electric strength and space charge characterization in LDPE composites with montmorillonite fillers. J. Nanomater. 2013, 2 (2013)

    Article  Google Scholar 

  18. H. Jiang, X. Zhang, J. Gao, N.J.E. Guo, Dielectric and AC breakdown properties of SiO2/MMT/LDPE micro-nano composites. Energies 14(5), 1235 (2021)

    Article  CAS  Google Scholar 

  19. J. Wu, B. Zhang, T. Li, Y. Du, W. Cao, H.J.P. Yang, Effect of trap regulation on vacuum DC surface flashover characteristics of Nano-ZnO/PI film. Polymers 14(17), 3605 (2022)

    Article  CAS  Google Scholar 

  20. T. Takada, Y. Hayase, Y. Tanaka, T. Okamoto, Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposite. IEEE Trans. Dielectr. Electr. Insul. 15(1), 152–160 (2008)

    Article  CAS  Google Scholar 

  21. N. Guo, J. Sun, Y. Li, X. Lv, J. Gao, M. He et al., Nonlinear surface conductivity characteristics of epoxy resin-based micro-nano structured composites. Energies 15(15), 5374 (2022)

    Article  CAS  Google Scholar 

  22. M.B. Tariq, The behaviour of charge on the surface of polymeric materials. 2019.

  23. T.J. Lewis, Nanometric dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1(5), 812–825 (1994)

    Article  CAS  Google Scholar 

  24. S. Singha, M.J. Thomas, Permittivity and tan delta characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz. IEEE Trans. Dielectr. Electr. Insul. 15(1), 2–11 (2008)

    Article  CAS  Google Scholar 

  25. M. Roy, J.K. Nelson, R.K. MacCrone, L.S. Schadler, C.W. Reed, R. Keefe, Polymer nanocomposite dielectrics-the role of the interface. IEEE Trans. Dielectr. Electr. Insul. 12(4), 629–643 (2005)

    Article  CAS  Google Scholar 

  26. J. Huang, J. Zhou, M.J.J.A. Liu, Interphase in polymer nanocomposites. JACS Au 2(2), 280–291 (2022)

    Article  CAS  Google Scholar 

  27. A. Sharma, M. Devi, A review on multiscale modelling and simulation for polymer nanocomposites. 2022.

  28. S. Sand Chee, M. Jawaid, The effect of Bi-functionalized MMT on morphology, thermal stability, dynamic mechanical, and tensile properties of epoxy/organoclay nanocomposites. Polymers 11(12), 2012 (2019)

    Article  Google Scholar 

  29. S. Fan, X. Gao, D. Zhu, S. Guo, Enhancement mechanism of the organic nano-montmorillonite and its effect on the properties of wood fiber/HDPE composite. Ind. Crops Prod. 169, 113634 (2021)

    Article  CAS  Google Scholar 

  30. T. Tanaka, M. Kozako, N. Fuse, Y. Ohki, Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 12(4), 669–681 (2005)

    Article  CAS  Google Scholar 

Download references

Funding

This research work is funded by [National Natural Science Foundation of China] Grant Number [51577045] and [Postdoctoral Research Startup Fund Project of Heilongjiang Province of China] Grant Number [LBH-Q19106].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Conceptualization, material preparation, data collection, and analysis were performed by ZY, LL, JN, and HJ. Project administration and supervision were performed by JG, NG, and LL. The first draft of the manuscript was written by ZY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junguo Gao.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Yao, Z., Liu, L. et al. The effect of polyethylene-based nano-montmorillonite composite interfaces on charge transport. J Mater Sci: Mater Electron 34, 860 (2023). https://doi.org/10.1007/s10854-023-10268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10268-2

Navigation