Skip to main content
Log in

Nanohybrids of 1D tin oxide (SnO2) nanotubes 2D-reduced graphene oxide (RGO) for improving photodegradation of Cr(VI)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of 1D tin oxide (SnO2) anchored on the 2D-reduced graphene oxide (RGO) composites were successfully synthesized by two-step hydrothermal method. The microstructure, morphology, chemical composition, oxidation states and surface areas of SnO2 nanotubes, SnO2 nanotubes/RGO nanosheets were comparatively studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and Brunauer–Emmett–Teller (BET). UV–Vis absorption spectra indicate that SnO2@RGO nanohybrids enhance absorbance in UV as well as visible region, while the intensity of PL decreases as compared to SnO2. This plays a crucial role to minimize the recombination of charge carriers through transfer of electron from SnO2 to RGO. The photocatalytic activities of the as-prepared nanocomposites for the photoreduction of Cr(VI) under visible irradiation were investigated. The SnO2@RGO nanocomposites exhibited better photodegradation efficiency (98%) than the bare SnO2 (38%). The enhanced photocatalytic activity of SnO2@RGO can be attributed to vectorial electron transfer process in the continuous network of RGO with large specific surface area, synergistic interaction between RGO and SnO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  Google Scholar 

  2. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  Google Scholar 

  3. N. Patel, R. Jaiswal, T. Warang, G. Scarduelli, A. Dashora, B.L. Ahuja, D.C. Kothari, A. Miotello, Efficient photocatalytic degradation of organic water pollutants using V-N, co-doped TiO2 thin films. Appl. Catal. B 150, 74–81 (2014)

    Article  Google Scholar 

  4. D. Spasiano, L.D.P.P. Rodriguez, J.C. Olleros, S. Malato, R. Marotta, R. Andreozzi, Enhanced photocatalytic activity based on composite structure with down conversion material and graphene. Appl. Catal. B 136, 56–63 (2013)

    Article  Google Scholar 

  5. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  6. S. Safa, R. Azimirad, Enhanced UV-detection and photocatalytic performance of TiO2-SWNTs nanocomposite fabricated by facile wetness-impregnation method. Chin. J. Phys. 52, 1156 (2014)

    CAS  Google Scholar 

  7. Y. Ku, C.N. Lin, W.M. Hou, Characterization of coupled NiO/TiO2 photocatalyst for the photocatalytic reduction of Cr(VI) in aqueous solution. J. Mol. Catal. A 349, 20–27 (2011)

    Article  CAS  Google Scholar 

  8. R. Malik, V.K. Tomer, V. Chaudhary, M.S. Dahiya, P.S. Rana, S.P. Nehra, S. Duhan, Facile synthesis of hybridized mesoporous Au@TiO2/SnO2 as efficient photocatalyst and selective VOC sensor. ChemistrySelect 1, 3247–3258 (2016)

    Article  CAS  Google Scholar 

  9. R. Malik, V. Chaudhary, P.S. Rana, V.K. Tomer, S.P. Nehra, S. Duhan, Lanthanide ions doped-SnO2: a stable and efficient photocatalyst for dye decontamination. Energy Environ. Focus 5, 35–42 (2016)

    Article  Google Scholar 

  10. R. Malik, V.K. Tomer, S. Duhan, S.P. Nehra, P.S. Rana, Effect of annealing temperature on the photocatalytic performance of SnO2 nanoflowers towards degradation of Rhodamine B. Adv. Sci. Eng. Med. 7, 448–456 (2015)

    Article  CAS  Google Scholar 

  11. Z. Xie, Y. Zhou, L. Guan, S. Muhammad, Y. Jiang, S. Zhang, C. Yu, Y. Jiao, S. Zhang, Y. Ren, X Zhou Z Liu, Effect of impurity in Cu2O nanowires on the degradation of methyl orange. J. Mater. Sci. Mater. Electron. 31, 3817–3824 (2020)

    Article  CAS  Google Scholar 

  12. F. Tariq, R. Hussain, Z. Noreen, A. Javed, A. Shah, A. Mahmood, M. Sajjad, H. Bokhari, S ur Rahman, Enhanced antibacterial activity of visible light activated sulfur-doped TiO2 nanoparticles against Vibrio cholera. Mater. Sci. Semicond. Process. 147, 106731 (2022)

    Article  CAS  Google Scholar 

  13. D.C.T. Nguyen, K.Y. Cho, W.C. Oh, Synthesis of frost-like CuO combined graphene-TiO2 by self-assembly method and its high photocatalytic performance. Appl. Surf. Sci. 412, 252–261 (2017)

    Article  CAS  Google Scholar 

  14. C. Sun, H. Liab, L. Chen, Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012)

    Article  CAS  Google Scholar 

  15. P. Manjula, R. Boppella, S.V. Manorama, A facile and green approach for the controlled synthesis of porous SnO2 nanospheres: application as an efficient photocatalyst and an excellent gas sensing material. ACS Appl. Mater. Interfaces 4, 6252–6260 (2012)

    Article  CAS  Google Scholar 

  16. P. Li, Y. Lan, Q. Zhang, Z. Zhao, T. Pullerits, K. Zheng, Y. Zhou, Iodinated SnO2 quantum dots: a facile and efficient approach to increase solar absorption for visible-light photocatalysis. J. Phys. Chem. C 120, 9253–9262 (2016)

    Article  CAS  Google Scholar 

  17. S. Liu, G. Huang, J. Yu, T.W. Ng, H.Y. Yip, P.K. Wong, Porous fluorinated SnO2 hollow nanospheres: transformative self-assembly and photocatalytic inactivation of bacteria. ACS Appl. Mater. Interfaces 6, 2407–2414 (2014)

    Article  CAS  Google Scholar 

  18. L. Li, J. Liu, Y. Su, G. Li, X. Chen, X. Qiu, T. Yan, Surface doping for photocatalytic purposes: relations between particle size, surface modifications, and photoactivity of SnO2:Zn2+ nanocrystals. Nanotechnology 20, 155706–155715 (2009)

    Article  Google Scholar 

  19. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C 33, 91–98 (2013)

    Article  CAS  Google Scholar 

  20. M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene. Chem. Rev. 110, 132–145 (2010)

    Article  CAS  Google Scholar 

  21. X. Zhou, T. Shi, J. Wu, H. Zhou, (001) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: synthesis, characterization and application in photocatalytic degradation. Appl. Surf. Sci. 287, 359–368 (2013)

    Article  CAS  Google Scholar 

  22. B. Liu, Y. Huang, Y. Wen, L. Du, W. Zeng, Y. Shi, F. Zhang, G. Zhu, X. Xu, Y. Wang, Highly dispersive 001 facets-exposed nanocrystalline TiO2 on high quality graphene as a high performance photocatalyst. J. Mater. Chem. 22, 7484–7491 (2012)

    Article  CAS  Google Scholar 

  23. J. Zhang, Z. Xiong, X.S. Zhao, Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 21, 3634–3640 (2011)

    Article  CAS  Google Scholar 

  24. S. Baek, S.H. Yu, S.K. Park, A. Pucci, C. Marichy, D.C. Lee, A one-pot microwave-assisted non-aqueous sol–gel approach to metal oxide/graphene nanocomposites for Li-ion batteries. RSC Adv. 1, 1687–1690 (2011)

    Article  CAS  Google Scholar 

  25. H.N. Lim, R. Nurzulaikha, I. Harrison, S.S. Lim, W.T. Tan, M.C. Yeo, Preparation and characterization of tin oxide, SnO2 nanoparticles decorated grapheme. Ceram. Int. 38, 4209–4216 (2012)

    Article  CAS  Google Scholar 

  26. A. Priyadharsan, V. Vasanthakumar, S. Karthikeyan, V. Raj, S. Shanavas, P.M. Anbarasan, Multi-functional properties of ternary CeO2/SnO2/rGO nanocomposites: visible light driven photocatalyst and heavy metal removal. J. Photochem. Photobiol. A 346, 32–45 (2017)

    Article  CAS  Google Scholar 

  27. Y. Yang, L. Qu, L. Dai, T.-S. Kang, M. Durstock, Electrophoresis coating of titanium dioxide on aligned carbon nanotubes for controlled syntheses of photoelectronic nanomaterials. Adv. Mater. 19, 1239–1243 (2007)

    Article  Google Scholar 

  28. G. Williams, B. Seger, P.V. Kamat, TiO2–graphene nanocomposites. UV assisted photocatalytic reduction of graphene oxide. ACS Nano 2, 1487–1491 (2008)

    Article  CAS  Google Scholar 

  29. H. Wang, J. Li, M. Zhou, Q. Guan, Z. Lu, P. Huo, Y. Yan, Preparation and characterization of Ag2O/SWNTs photocatalysts and its photodegradation on tetracycline. J. Ind. Eng. Chem. 30, 64–70 (2015)

    Article  Google Scholar 

  30. H. Wang, X. Yang, J. Zi, M. Zhou, Z. Ye, J. Li, Q. Guan, P. Lv, P. Huo, Y. Yan, High photocatalytic degradation of tetracycline under visible light with Ag/AgCl/activated carbon composite plasmonic photocatalyst. J. Ind. Eng. Chem. 35, 83–92 (2016)

    Article  Google Scholar 

  31. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  32. M. Parthibavarman, M. Karthik, P. Sathishkumar, R. Poonguzhali, Rapid synthesis of novel Cr-doped WO3 nanorods: an efficient electrochemical and photocatalytic performance. J. Iran. Chem. Soc. 15, 1419–1430 (2018)

    Article  CAS  Google Scholar 

  33. R. BoopathiRaja, M. Parthibavarman, Hetero-structure arrays of MnCo2O4 nanoflakes@ nanowires grown on Ni foam: design, fabrication and applications in electrochemical energy storage. J. Alloys Compd. 811, 152084 (2019)

    Article  CAS  Google Scholar 

  34. R. BoopathiRaja, M. Parthibavarman, A. Nishara Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96–104 (2019)

    Article  CAS  Google Scholar 

  35. M. Durairasan, P. SivaKarthik, J. Balaji, B. Rajeshkanna, Design and fabrication of WSe2/CNTs hybrid network: a highly efficient and stable electrodes for dye sensitized solar cells (DSSCs). Diam. Relat. Mater. 12, 108174 (2020)

    Google Scholar 

  36. Y.L. Li, Y.Y. Bian, H.X. Qin et al., Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide. Appl. Catal. B 206, 293–299 (2017)

    Article  CAS  Google Scholar 

  37. M. Zhou, J. Li, Z. Ye, C. Ma, H. Wang, P. Huo, W. Shi, Y. Yan, Transfer Charge and Energy of Ag@CdSe QDs-RGO core–shell plasmonic photocatalyst for enhanced visible light photocatalytic activity. ACS Appl. Mater. Interfaces 7, 28231–28243 (2015)

    Article  CAS  Google Scholar 

  38. G. Peng, J.E. Ellis, X. Xu, A. Star, In situ grown TiO2 nanospindles facilitate the formation of holey reduced graphene oxide by photodegradation. ACS Appl. Mater. Interfaces 8, 7403–7410 (2016)

    Article  CAS  Google Scholar 

  39. H. Liu, T. Liu, Z. Zhang, X. Dong, Y. Liu, Z. Zhu, Simultaneous conversion of organic dye and Cr(VI) by SnO2/rGO microcomposites. J. Mol. Catal. A 410, 41–48 (2015)

    Article  CAS  Google Scholar 

  40. Y. Zhao, D. Zhao, C. Chen, X. Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J. Colloid Interface Sci. 405, 211–217 (2013)

    Article  CAS  Google Scholar 

  41. X. Liu, W. Liu, Z. Chi, Enhanced Cr(VI) adsorption using ZnO decorated graphene composite: batch and continuous studies. J. Taiwan Inst. Chem. Eng. 140, 104534 (2022)

    Article  Google Scholar 

  42. S.T. Rahmat, W.K. Tan, G. Kawamura, A. Matsuda, Z. Lockman, Facile fabrication of rGO/rutile TiO2 nanowires as photocatalyst for Cr(VI) reduction. Mater. Today Proc. 17, 1143–1151 (2019)

    Article  CAS  Google Scholar 

  43. L. Xu, L. Yang, X. Bai, X. Du, Y. Wang, P. Jin, Persulfate activation towards organic decomposition and Cr(VI) reduction achieved by a novel CQDs-TiO2–x/rGO nanocomposite. Chem. Eng. J. 373, 238–250 (2019)

    Article  CAS  Google Scholar 

  44. L. Liu, C. Luo, J. Xiong, Z. Yang, Y. Zhang, Y. Cai, H. Gu, Reduced graphene oxide (rGO) decorated TiO2 microspheres for visible-light photocatalytic reduction of Cr(VI). J. Alloys Compd. 690, 771–776 (2017)

    Article  CAS  Google Scholar 

  45. Y. Hou, S. Pu, Q. Shi, S. Mandal, H. Ma, S. Xue, Ultrasonic impregnation assisted in situ photoreduction deposition synthesis of Ag/TiO2/rGO ternary composites with synergistic enhanced photocatalytic activity. J. Taiwan Inst. Chem. Eng. 104, 139–150 (2019)

    Article  CAS  Google Scholar 

  46. X. Cheng, W. Leng, D. Liu, Y. Xu, J. Zhang, C. Cao, Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties. J. Phys. Chem. C 112, 8725–8734 (2008)

    Article  CAS  Google Scholar 

  47. L. Peng, T. Xie, Y. Lu, H. Fan, D. Wang, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 8033–8041 (2010)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

DR and MDK: study conceptualization and writing (original draft) the manuscript. PSK: data curation, formal analysis and writing (review and editing), and funding acquisition and project administration.

Corresponding author

Correspondence to M. Dharmendira Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramki, D., Dharmendira Kumar, M. & Siva Karthik, P. Nanohybrids of 1D tin oxide (SnO2) nanotubes 2D-reduced graphene oxide (RGO) for improving photodegradation of Cr(VI). J Mater Sci: Mater Electron 34, 551 (2023). https://doi.org/10.1007/s10854-023-09854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-09854-1

Navigation