Skip to main content
Log in

Growth and characterization of organic 4-methoxy-2-nitroaniline single crystals for optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The organic aromatic 4-methoxy-2-nitroaniline single crystal was grown by the slow evaporation method. The single crystal X-ray diffraction (XRD) and powder XRD analyses show that the grown crystal belongs to an orthorhombic crystal system and the obtained unit cell parameters are a = 16.17 Å, b = 6.55 Å, c = 7.14 Å, α = 90°, β = 90°, and γ = 90°. The various functional groups present in the grown crystal were identified by using Fourier transform infrared (FTIR) and FT-Raman spectral analyses. The optical properties of the grown single crystal were analyzed by UV–Vis-NIR studies, and the optical parameters are calculated. The photoluminescence analysis reveals that the high-intensity emission peak was observed around 599 nm. The thermal (TG/DTA) analyses were used to investigate the melting and decomposition points of the grown 4-methoxy-2-nitroaniline single crystal. The Coats-Redfern and Horowitz-Metzger methods were used to calculate the kinetic and thermodynamic parameters like the activation energy (E), frequency factor (Z), enthalpy (ΔH*), entropy (ΔS*), and Gibbs free energy (ΔG*). The Agilent LCR meter was used to analyze dielectric properties at various temperatures ranging from 40 to 120 °C and frequencies ranging from 100 Hz to 1 MHz. The nonlinear optical properties of 4-methoxy-2-nitroaniline were measured using the Z-scan technique, with 532 nm diode pumped continuous wave (CW) Nd:YAG laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. 104, 2952–2965 (2021)

    Article  CAS  Google Scholar 

  2. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, RSC Adv. 11, 11500–11512 (2021)

    Article  CAS  Google Scholar 

  3. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Int. J. Hydrog. Energy 44, 24005–24016 (2019)

    Article  CAS  Google Scholar 

  4. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, J. Nanostruct. 6(1), 80–85 (2016)

    CAS  Google Scholar 

  5. S.R. Yousefi, D. Ghanbari, M. Salavati-Niasari, M. Hassanpour, J. Mater. Sci: Mater. Electron. 27(2), 1244–1253 (2015)

    Google Scholar 

  6. R.W. Munn, C.N. Ironside, Principles and Applications of Nonlinear Optical Materials (Chapman & Hall, London, 1993)

    Book  Google Scholar 

  7. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Cryst. Eng. Commun. 13, 4018–4024 (2011)

    Article  CAS  Google Scholar 

  8. B. Ivanova, M. Spiteller, Cryst. Growth Des. 10(6), 2470–2474 (2010)

    Article  CAS  Google Scholar 

  9. S. Siva Bala Solanki, N.P. Rajesh, T. Suthan, Opt. Laser Technol. 93, 143–148 (2017)

    Article  Google Scholar 

  10. T. Suthan, N.P. Rajesh, J. Cryst. Growth 312, 3156–3160 (2010)

    Article  CAS  Google Scholar 

  11. I.C. Paul, D.Y. Curtin, Acc. Chem. Rev. 7, 217–225 (1973)

    Article  Google Scholar 

  12. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, Opt. Laser Technol. 115, 500–507 (2019)

    Article  CAS  Google Scholar 

  13. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, S.A.B. Dhas, Opt. Mater. 57, 163–168 (2016)

    Article  CAS  Google Scholar 

  14. X.Q. Wang, X.F. Cheng, S.J. Zhang, D. Xu, G.H. Zhang, Z.H. Sun, F.P. Yu, X.J. Liu, W.L. Liu, C.L. Chen, Physica B. 405, 1071–1080 (2010)

    Article  CAS  Google Scholar 

  15. M.M. Rosli, P.S. Patil, H.-K. Fun, I.A. Razak, S.M. Dharmaprakash, Acta Cryst. E63, o1039–o1040 (2007)

    Google Scholar 

  16. JCPDS file card no: 00-045-1610

  17. P.P. Abirami Priya, T. Suthan, S.A.T. Raja, V. Bena Jothy, J. Mater. Sci. Mater. Electron. 33, 14214–14227 (2022)

    Article  Google Scholar 

  18. B.K. Periyasamy, R.S. Jebas, N. Gopalakrishnan, T. Balasubramanian, Mater. Lett. 61, 4246–4249 (2007)

    Article  CAS  Google Scholar 

  19. S. Pankaj Sharma, C. Katyal, J. Phys. D: Appl. Phys. 40, 2115–2120 (2007)

    Article  Google Scholar 

  20. A.I. Arbab, Optik 194, 163067–163074 (2019)

    Article  CAS  Google Scholar 

  21. F. Urbach, Phys. Rev. 92, 1324–1325 (1953)

    Article  CAS  Google Scholar 

  22. R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, G. Vinitha, J. Mater. Sci: Mater. Electron. 32, 3232–3246 (2021)

    CAS  Google Scholar 

  23. L.L. Kazmersky (ed.), Polycrystalline and Amorphous Thin Films and Devices (Academic Press, New York, 1980)

    Google Scholar 

  24. M. Karimi, M. Rabiee, F. Moztarzadeh, M. Tahriri, M. Bodaghi, Curr. Appl. Phys. 9, 1263–1268 (2009)

    Article  Google Scholar 

  25. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, Spectrochim. Acta Part A 87, 194–198 (2012)

    Article  CAS  Google Scholar 

  26. W. Coats, J.P. Redfern, Nature 201, 68–69 (1964)

    Article  CAS  Google Scholar 

  27. H.H. Horowitz, G. Metzger, Anal. Chem. 35, 1464–1468 (1963)

    Article  CAS  Google Scholar 

  28. K.M. Lu, W.J. Lee, W.H. Chen, T.C. Lin, Appl. Energy. 105, 57–65 (2013)

    Article  CAS  Google Scholar 

  29. H.H. Horowitz, G. Metzger, Anal. Chem. 35(10), 1464–1468 (1963)

    Article  CAS  Google Scholar 

  30. P.S. Abthagir, R. Saraswathi, Mater. Chem. Phys. 92(1), 21–26 (2005)

    Article  Google Scholar 

  31. P.S. Abthagir, R. Saraswathi, S. Sivakolunthu, Thermochim. Acta. 411(2), 109–123 (2004)

    Article  CAS  Google Scholar 

  32. K.J. Laidler, Chemical Kinetics, 2nd edn. (Tata McGrawHill, New York, 1972)

    Google Scholar 

  33. S.F. Daniels, R.A. Alberty, Phys. Chem. (Wiley, New York, 1955)

    Google Scholar 

  34. T. Suthan, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Mater. Chem. Phys. 129, 433–438 (2011)

    Article  CAS  Google Scholar 

  35. T. Suthan, N.P. Rajesh, P.V. Dhanaraj, C.K. Mahadevan, Spectrochim. Acta Part A 75, 69–73 (2010)

    Article  CAS  Google Scholar 

  36. T. Suthan, N.P. Rajesh, C.K. Mahadevan, K. Senthil Kumar, G. Bhagavannarayana, Spectrochim. Acta Part A 79, 1443–1448 (2011)

    Article  CAS  Google Scholar 

  37. J. Laugier, B. Bochu, LMGP-Suite suite of Programs for the interpretation of X-ray Experiments, France (2000)

  38. S. Prince, T. Suthan, C. Gnanasambandam, N.P. Rajesh, G. Vinitha, J. Mater. Sci: Mater. Electron. 33, 5909–5923 (2022)

    CAS  Google Scholar 

  39. S.S.B. Solanki, N.P. Rajesh, T. Suthan, Opt. Laser Technol. 103, 163–169 (2018)

    Article  CAS  Google Scholar 

  40. T.C.S. Girisun, S. Dhanuskodi, Cryst. Res. Technol. 44, 1297–1302 (2009)

    Article  CAS  Google Scholar 

  41. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)

    Article  CAS  Google Scholar 

  42. E.W. Van Stryland, M. Sheik-Bahae, M.G. Kuzyk, C.W. Dirk (eds.), Characterization Techniques and Tabulations for Organic Nonlinear Materials (Marcel Dekker Inc, New York, 1998)

    Google Scholar 

  43. S. Prince, T. Suthan, C. Gnanasambandam, J. Electron. Mater. 51, 1639–1652 (2022)

    Article  CAS  Google Scholar 

  44. V. Subashini, S. Ponnusamy, C. Muthamizhchelvan, J. Cryst. Growth. 363, 211–219 (2013)

    Article  Google Scholar 

  45. M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Stryland Van, IEEE Quant. Electron. 26, 760–769 (1990)

    Article  Google Scholar 

  46. Y. Zhou, E. Wang, J. Peng, J. Liu, C.W. Hu, R. Huang, X. You, Polyhedron 18, 1419–1423 (1999)

    Article  CAS  Google Scholar 

  47. R.P. Jebin, T. Suthan, N.P. Rajesh, G. Vinitha, U. Madhusoodhanan, Spectrochim. Acta A Mol. Biomol. Spectrosc. 135, 959–964 (2015)

    Article  CAS  Google Scholar 

  48. N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, W. Haidong, Opt. Commun. 184, 475–483 (2000)

    Article  CAS  Google Scholar 

  49. M.T. Zhao, B.P. Singh, P.N. Prasad, J. Chem. Phys. 89, 5535–5541 (1988)

    Article  CAS  Google Scholar 

  50. H.L. Fan, Q. Ren, T.B. Wang, J. Li, G.H. Sun, D. Zhang, G. Xu, G. Yu, G.H. Sun, Nat. Sci. 1(2), 136–141 (2009)

    CAS  Google Scholar 

  51. Q. Chena, E.H. Sargent, Appl. Phys. Lett. 82(25), 4420–4422 (2003)

    Article  Google Scholar 

  52. A.I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, A.L. Stepanov, Opt. Commun. 273, 538–543 (2007)

    Article  CAS  Google Scholar 

  53. H. Fan, Q. Ren, X. Wang, T. Li, J. Sun, G. Zhang, D. Xu, G. Yu, Z. Sun, Nat. Sci. 1, 136–141 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grants Commission (UGC), South Eastern Regional Office (SERO), Government of India, under the grant of Minor Research Project UGC Reference No: F. MRP-7005/16 (SERO/UGC) Link No: 7005, is hereby gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, and analysis were performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Suthan.

Ethics declarations

Conflict of interest

No conflict of interest exists or if such conflict exists, the exact nature must be declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prince, S., Suthan, T., Goma, S. et al. Growth and characterization of organic 4-methoxy-2-nitroaniline single crystals for optical applications. J Mater Sci: Mater Electron 34, 165 (2023). https://doi.org/10.1007/s10854-022-09481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-022-09481-2

Navigation