Skip to main content
Log in

Construction and characterization of CoWO4/g-C3N4 composites for efficient sonocatalytic degradation of Rhodamine B

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, CoWO4/g-C3N4 composites with efficient sonocatalytic activity were fabricated by a modified polyacrylamide gel route combined with a facile ultrasound-assisted process. A variety of characterization methods have been adopted to confirm the phase purity, charge state, morphology, optical property, and sonocatalytic activity of CoWO4/g-C3N4 composites. The sonocatalytic activities of as-prepared composites were evaluated by the degradation of Rhodamine B (RhB). The high sonocatalytic degradation efficiency (84.8%) was achieved over 1 g/L CoWO4/g-C3N4 (7 wt%) composites and 10 mg/L RhB solution under ultrasonic irradiation (180 W, 40 kHz) for 180 min. The degradation efficiency of RhB over CoWO4/g-C3N4 (7 wt%) sonocatalyst is 6.6 times as high as that of pure CoWO4. Trapping experiments reveal that the sonocatalytic decomposition of RhB was mainly due to the production of superoxide radicals. A possible sonodegradation mechanism was proposed based on the sonocatalytic experiments, and stability and reusability of CoWO4/g-C3N4 composites were also studied. The CoWO4/g-C3N4 composites as an efficient sonocatalyst for the catalytic degradation of RhB have great potential in wastewater treatment. This work will provide a valuable reference for the construction and application of composite sonocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. K.G. Pavithra, P.S. Kumar, V. Jaikumar, P.S. Rajan, J. Ind. Eng. Chem. 75, 1–19 (2019). https://doi.org/10.1016/j.jiec.2019.02.011

    Article  CAS  Google Scholar 

  2. D. Xu, H.L. Ma, J. Cleaner Prod. 313, 127758 (2021). https://doi.org/10.1016/j.jclepro.2021.127758

    Article  CAS  Google Scholar 

  3. B.M. Jun, Y. Kim, Y. Yoon, Y. Yea, C.M. Park, Ceram. Int. 46, 22521–22531 (2020). https://doi.org/10.1016/j.ceramint.2020.06.012

    Article  CAS  Google Scholar 

  4. L. Xu, X.F. Wang, B. Liu, T. Sun, X. Wang, Colloid. Surf. A 627, 127222 (2021). https://doi.org/10.1016/j.colsurfa.2021.127222

    Article  CAS  Google Scholar 

  5. H. Ashiq, N. Nadeem, A. Mansha, J. Iqbal, M. Yaseen, M. Zahid, I. Shahid, J. Phys. Chem. Solids 161, 110437 (2022). https://doi.org/10.1016/j.jpcs.2021.110437

    Article  CAS  Google Scholar 

  6. N. Shimizu, C. Ogino, M.F. Dadjour, T. Murata, Ultrason. Sonochem. 14, 184–190 (2007). https://doi.org/10.1016/j.ultsonch.2006.04.002

    Article  CAS  Google Scholar 

  7. P. Gholami, A. Khataee, R.D.C. Soltani, A. Bhatnagar, Ultrason. Sonochem. 58, 104681 (2019). https://doi.org/10.1016/j.ultsonch.2019.104681

    Article  CAS  Google Scholar 

  8. L.M. Song, Y.M. Li, S.J. Zhang, Environ. Sci. Pollut. Res. Int. 25, 10714–10719 (2018). https://doi.org/10.1007/s11356-018-1369-8

    Article  CAS  Google Scholar 

  9. I. Grčić, D. Vujević, K. Žižek, N. Koprivanac, Reac. Kinet. Mech. Cat. 109, 335–354 (2013). https://doi.org/10.1007/s11144-013-0562-5

    Article  CAS  Google Scholar 

  10. J. Wang, Z. Jiang, Z.H. Zhang, Y.P. Xie, X.F. Wang, Z.Q. Xing, R. Xu, X.D. Zhang, Ultrason. Sonochem. 15, 768–774 (2008). https://doi.org/10.1016/j.ultsonch.2008.02.002

    Article  CAS  Google Scholar 

  11. L. Xu, S.H. Wang, Y. Jin, N.P. Liu, X.Q. Wu, X. Wang, Sep. Purif. Technol. 276, 119405 (2021). https://doi.org/10.1016/j.seppur.2021.119405

    Article  CAS  Google Scholar 

  12. M. Zargazi, M.H. Entezari, Ultrason. Sonochem. 51, 1–11 (2019). https://doi.org/10.1016/j.ultsonch.2018.10.010

    Article  CAS  Google Scholar 

  13. L. Xu, X. Wang, M.L. Xu, B. Liu, X.F. Wang, S.H. Wang, T. Sun, Ultrason. Sonochem. 61, 104815 (2020). https://doi.org/10.1016/j.ultsonch.2019.104815

    Article  CAS  Google Scholar 

  14. P. Saharan, G.R. Chaudhary, S. Lata, S. Mehta, S. Mor, Ultrason. Sonochem. 22, 317–325 (2015). https://doi.org/10.1016/j.ultsonch.2014.07.004

    Article  CAS  Google Scholar 

  15. Á. De Jesús Ruíz Baltazar, Ultrason. Sonochem. 73, 105521 (2021). https://doi.org/10.1016/j.ultsonch.2021.105521

    Article  CAS  Google Scholar 

  16. Y.Q. He, Z.Y. Ma, L.B. Junior, Ceram. Int. 46, 12364–12372 (2020). https://doi.org/10.1016/j.ceramint.2020.01.287

    Article  CAS  Google Scholar 

  17. X. Wang, S. Yu, Z.H. Li, L.L. He, Q.L. Liu, M.Y. Hu, L. Xu, X.F. Wang, Z. Xiang, Chem. Eng. J. 405, 126922 (2021). https://doi.org/10.1016/j.cej.2020.126922

    Article  CAS  Google Scholar 

  18. G. Lee, S. Ibrahim, S. Kittappa, H. Park, C.M. Park, Ultrason. Sonochem. 44, 64–72 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.015

    Article  CAS  Google Scholar 

  19. L.L. He, Y.X. Guo, Y. Zhu, X.T. Guo, N. Wang, X.F. Wang, X. Wang, Mater. Lett. 284, 128927 (2021). https://doi.org/10.1016/j.matlet.2020.128927

    Article  CAS  Google Scholar 

  20. F. Ahmadi, M. Rahimi Nasrabadi, A. Fosooni, M. Daneshmand, J. Mater. Sci-Mater. El. 27, 9514–9519 (2016). https://doi.org/10.1007/s10854-016-5002-7

    Article  CAS  Google Scholar 

  21. T. Montini, V. Gombac, A. Hameed, L. Felisari, G. Adami, P. Fornasiero, Chem. Phys. Lett. 498, 113–119 (2010). https://doi.org/10.1016/j.cplett.2010.08.026

    Article  CAS  Google Scholar 

  22. F. Chang, Y.C. Xie, C.L. Li, J. Chen, J.R. Luo, X.F. Hu, J.W. Shen, Appl. Surf. Sci. 280, 967–974 (2013). https://doi.org/10.1016/j.apsusc.2013.05.127

    Article  CAS  Google Scholar 

  23. C. Prasad, H. Tang, Q.Q. Liu, I. Bahadur, S. Karlapudi, Y.J. Jiang, Int. J. Hydrogen Energy 45, 337–379 (2020). https://doi.org/10.1016/j.ijhydene.2019.07.070

    Article  CAS  Google Scholar 

  24. G.Z. Sun, Q.Z. Gao, S.N. Tang, R.Z. Ling, Y. Cai, C. Yu, H. Liu, H.J. Gao, X.X. Zhao, A.R. Wang, J. Electron. Mater. (2022). https://doi.org/10.1007/s11664-022-09576-w

    Article  Google Scholar 

  25. H.J. Gao, S.N. Tang, X.Y. Chen, C. Yu, S.F. Wang, L.M. Fang, X.L. Yu, X.X. Zhao, G.Z. Sun, H. Yang, Russ. J. Phys. Chem. A 95, S288–S295 (2021). https://doi.org/10.1134/S0036024421150103

    Article  CAS  Google Scholar 

  26. S. Shanmugapriya, S. Surendran, V. Nithya, P. Saravanan, R.K. Selvan, Mater. Sci. Eng. B 214, 57–67 (2016). https://doi.org/10.1016/j.mseb.2016.09.002

    Article  CAS  Google Scholar 

  27. H. Zhang, R.J. Bai, C. Lu, J. Li, Y.G. Xu, L.B. Kong, M.C. Liu, Ionics 25, 533–540 (2019). https://doi.org/10.1007/s11581-018-2791-0

    Article  CAS  Google Scholar 

  28. R. Nasser, X.L. Wang, J. Tiantian, H. Elhouichet, J.M. Song, J. Energy. Storage. 51, 104349 (2022). https://doi.org/10.1016/j.est.2022.104349

    Article  Google Scholar 

  29. M.C. Zhang, H.Q. Fan, N. Zhao, H.J. Peng, X.H. Ren, W.J. Wang, H. Li, G.Y. Chen, Y.N. Zhu, X.B. Jiang, Chem. Eng. J. 347, 291–300 (2018). https://doi.org/10.1016/j.cej.2018.04.113

    Article  CAS  Google Scholar 

  30. G.D. Shi, L. Yang, Z.W. Liu, X. Chen, J.Q. Zhou, Y. Yu, Appl. Surf. Sci. 427, 1165–1173 (2018). https://doi.org/10.1016/j.apsusc.2017.08.148

    Article  CAS  Google Scholar 

  31. C.Y. Liu, Y.H. Zhang, F. Dong, X. Du, H.W. Huang, J. Phys. Chem. C 120, 10381–10389 (2016). https://doi.org/10.1021/acs.jpcc.6b01705

    Article  CAS  Google Scholar 

  32. H. Qin, R.T. Guo, X.Y. Liu, X. Shi, Z.Y. Wang, J.Y. Tang, W.G. Pan, Colloid. Surf. A 600, 124912 (2020). https://doi.org/10.1016/j.colsurfa.2020.124912

    Article  CAS  Google Scholar 

  33. G.Z. Sun, Q.Z. Gao, S.N. Tang, X.Y. Chen, H. Liu, H.J. Gao, X.X. Zhao, A.R. Wang, X.L. Yu, S.F. Wang, Russ. J. Phys. Chem. A 96, 1348–1355 (2022). https://doi.org/10.1134/S0036024422060097

    Article  CAS  Google Scholar 

  34. G.Z. Sun, G.A. Sun, M. Zhong, S.F. Wang, X.T. Zu, X. Xiang, Russ. J. Phys. Chem. A 90, 691–699 (2016). https://doi.org/10.1134/S0036024416030146

    Article  CAS  Google Scholar 

  35. N. Tian, H.W. Huang, Y.X. Guo, Y. He, Y.H. Zhang, Appl. Surf. Sci. 322, 249–254 (2014). https://doi.org/10.1016/j.apsusc.2014.10.071

    Article  CAS  Google Scholar 

  36. M. Jeyakanthan, U. Subramanian, R. Tangsali, J. Mater. Sci-Mater. El. 29, 1914–1924 (2018). https://doi.org/10.1007/s10854-017-8101-1

    Article  CAS  Google Scholar 

  37. J. Juliet JosephineJoy, N. Victor Jaya, J. Mater. Sci-Mater. El. 24, 1788–1795 (2013). https://doi.org/10.1007/s10854-012-1013-1

    Article  CAS  Google Scholar 

  38. S.L. Han, K. Xiao, L.Y. Liu, H.W. Huang, Mater. Res. Bull. 74, 436–440 (2016). https://doi.org/10.1016/j.materresbull.2015.10.026

    Article  CAS  Google Scholar 

  39. H. Kamani, S. Nasseri, M. Khoobi, R. NabizadehNodehi, A.H. Mahvi, J. Environ. Health. Sci 14, 1–9 (2016). https://doi.org/10.1186/s40201-016-0242-2

    Article  CAS  Google Scholar 

  40. X. Yan, Z.Y. Wu, C.Y. Huang, K.L. Liu, W.D. Shi, Ceram. Int. 43, 5388–5395 (2017). https://doi.org/10.1016/j.ceramint.2016.12.060

    Article  CAS  Google Scholar 

  41. P. Taneja, S. Sharma, A. Umar, S.K. Mehta, A.O. Ibhadon, S.K. Kansal, Mater. Chem. Phys. 211, 335–342 (2018). https://doi.org/10.1016/j.matchemphys.2018.02.041

    Article  CAS  Google Scholar 

  42. X.J. Bai, L. Wang, Y.J. Wang, W.Q. Yao, Y.F. Zhu, Appl. Catal. B 152, 262–270 (2014). https://doi.org/10.1016/j.apcatb.2014.01.046

    Article  CAS  Google Scholar 

  43. S.F. Wang, S.N. Tang, H.J. Gao, X.Y. Chen, H. Liu, C. Yu, Z.J. Yin, X.X. Zhao, X.D. Pan, H. Yang, Opt. Mater. 118, 111273 (2021). https://doi.org/10.1016/j.optmat.2021.111273

    Article  CAS  Google Scholar 

  44. M. Zhou, H. Yang, T. Xian, R.S. Li, H.M. Zhang, X.X. Wang, J. Hazard. Mater. 289, 149–157 (2015). https://doi.org/10.1016/j.jhazmat.2015.02.054

    Article  CAS  Google Scholar 

  45. L. Zhu, S.B. Jo, S. Ye, K. Ullah, W.C. Oh, Chin. J. Catal. 35, 1825–1832 (2014). https://doi.org/10.1016/S1872-2067(14)60158-3

    Article  CAS  Google Scholar 

  46. T.T. Li, L.M. Song, S.J. Zhang, Environ. Sci. Pollut. Res. R. 25, 7937–7945 (2018). https://doi.org/10.1007/s11356-017-1086-8

    Article  CAS  Google Scholar 

  47. L.M. Song, S.J. Zhang, X.Q. Wu, Q.W. Wei, Ultrason. Sonochem. 19, 1169–1173 (2012). https://doi.org/10.1016/j.ultsonch.2012.03.011

    Article  CAS  Google Scholar 

  48. S.X. Ge, B.B. Wang, D.P. Li, W.J. Fa, Z.Y. Yang, Z. Yang, G.Y. Jia, Z. Zheng, Appl. Surf. Sci. 295, 123–129 (2014). https://doi.org/10.1016/j.apsusc.2014.01.015

    Article  CAS  Google Scholar 

  49. R. Ran, J.G. Mcevoy, Z. Zhang, Int. J. Photoenergy (2015). https://doi.org/10.1155/2015/612857

    Article  Google Scholar 

  50. F. Guo, W.L. Shi, H.B. Wang, H. Huang, Y. Liu, Z.H. Kang, Inorg. Chem. Front 4, 1714–1720 (2017). https://doi.org/10.1039/C7QI00402H

    Article  CAS  Google Scholar 

  51. M. Ghobadifard, S. Farhadi, S. Mohebbi, Polyhedron 155, 66–76 (2018). https://doi.org/10.1016/j.poly.2018.08.028

    Article  CAS  Google Scholar 

  52. S.Y. Li, M. Zhang, X. Ma, J. Qiao, H.B. Zhang, J. Wang, Y.T. Song, J. Ind. Eng. Chem. 72, 157–169 (2019). https://doi.org/10.1016/j.jiec.2018.12.015

    Article  CAS  Google Scholar 

  53. F. Siadatnasab, S. Farhadi, A. Khataee, Ultrason. Sonochem. 44, 359–367 (2018). https://doi.org/10.1016/j.ultsonch.2018.02.051

    Article  CAS  Google Scholar 

  54. Z.D. Meng, W.C. Oh, Ultrason. Sonochem. 18, 757–764 (2011). https://doi.org/10.1016/j.ultsonch.2010.10.008

    Article  CAS  Google Scholar 

  55. F. Siadatnasab, S. Farhadi, A.A. Hoseini, M. Sillanpää, New J. Chem. 44, 16234–16245 (2020). https://doi.org/10.1039/D0NJ03441J

    Article  CAS  Google Scholar 

  56. S. Selvi, R. Rajendran, D. Barathi, N. Jayamani, J. Electron. Mater. 50, 2890–2902 (2021). https://doi.org/10.1007/s11664-020-08729-z

    Article  CAS  Google Scholar 

  57. N. Boonprakob, N. Wetchakun, S. Phanichphant, D. Waxler, P. Sherrell, A. Nattestad, J. Chen, B. Inceesungvorn, J. Colloid Interface Sci. 417, 402–409 (2014). https://doi.org/10.1016/j.jcis.2013.11.072

    Article  CAS  Google Scholar 

  58. R. Bharati, R. Singh, B. Wanklyn, J. Mater. Sci. 16, 775–779 (1981). https://doi.org/10.1007/BF00552216

    Article  CAS  Google Scholar 

  59. H. Xu, Z.X. Gan, W.P. Zhou, Z.M. Ding, X.W. Zhang, RSC. Adv. 7, 40028–40033 (2017). https://doi.org/10.1039/C7RA06497G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Research Program of Chongqing Education Commission of China (KJQN202001225), Project (YB2020C0402) supported by Chongqing Key Laboratory of Geological Environment Monitoring and Disaster Early-Warning in Three Gorges Reservoir Area, Chongqing Three Gorges University, the Talent Introduction Project (09826501).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

QG and GS designed this study. QG, RL, and YC performed material preparation and data collection. Qizhi Gao, Guangzhuang Sun, and Anrong Wang analyzed the data. Qizhi Gao and Guangzhuang Sun wrote the first draft of the manuscript and all authors revised the manuscript.

Corresponding author

Correspondence to Guangzhuang Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Sun, G., Ling, R. et al. Construction and characterization of CoWO4/g-C3N4 composites for efficient sonocatalytic degradation of Rhodamine B. J Mater Sci: Mater Electron 33, 25589–25602 (2022). https://doi.org/10.1007/s10854-022-09257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09257-8

Navigation