Skip to main content
Log in

Investigation of optical, dielectric, and multiferroic properties of (1 − x) Bi0.9La0.1FeO3–(x) BaTiO3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we synthesized composites (1 − x) Bi0.9La0.1FeO3-(x) BaTiO3 with x = 0.05, 0.10, and 0.15 by solid-state technique. We studied their crystal structure, morphology, optical, electrical, and magnetic behavior. Crystal structure of the constituents of the composites and their presence in the composite was witnessed from the analysis of X-ray diffractograms by Rietveld refinement of the synthesized composites. Micrographs obtained from FESEM characterization technique revealed the non-homogeneous grain and grain boundaries with no foreign impurities. In addition, energy-dispersive X-ray diffraction analysis (EDAX) confirms the presence of all the integral elements of the composite. Optical bandgap of the order of ~ 2.19 eV was estimated from the analysis of diffuse reflectance UV–Vis spectroscopy (DRS). Temperature-dependent dielectric properties of the synthesized samples were measured at different constant frequency values in the temperature range from 100 to 350 °C. A gradual increase in dielectric constant from 180 °C was shown by all the samples. Corresponding to different applied constant field values, the polarizability vs. electric field loop (PE loop) of all composites displays leakage. This behavior is attributed to the volatile nature of bismuth ferrite. Magnetization vs. magnetic field (MH) hysteresis loop characteristics obtained at room temperature revealed the anti-ferromagnetic nature for pure Bi0.9La0.1FeO3. Further, weak ferromagnetic property becomes dominant as BaTiO3 content increased in the composite.Article title: Kindly check and confirm the edit made in the title.ok

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N.A. Hill, J. Phys. Chem. B 104, 6694 (2000)

    Article  CAS  Google Scholar 

  2. N.A. Spaldin, S.W. Cheong, R. Ramesh, Phys. Today 63, 38 (2010)

    Article  Google Scholar 

  3. N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang, H. Olin, Y. Yang, Nano-Micro Lett. 12, 81 (2020)

    Article  CAS  Google Scholar 

  4. , 81 (2020).

  5. S. Jangid, S.K. Barbar, M. Roy, Biosens. Nanotechnol. (2014). https://doi.org/10.1002/9781118773826.ch13

    Article  Google Scholar 

  6. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  CAS  Google Scholar 

  7. A.J. Bell, O. Deubzer, MRS Bull. 43, 581 (2018)

    Article  CAS  Google Scholar 

  8. I.E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957)

    Google Scholar 

  9. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  CAS  Google Scholar 

  10. Z. Wen, X. Shen, D. Wua, Q. Xu, J. Wang, A. Li, Solid State Commun. 150, 2081–2084 (2010)

    Article  CAS  Google Scholar 

  11. J.C. Zhu, X. Hu, X.Y. Mao, W. Wang, X.B. Chen, Mater. Sci. Forum. 636, 356–360 (2010)

    Article  Google Scholar 

  12. Z.H. Dai, Y. Akishige, Ceram. Int. 38, 403–406 (2012)

    Article  Google Scholar 

  13. W.Y. Zhao, Q.J. Zhang, X.F. Tang, H.B. Cheng, P.C. Zhai, J. Appl. Phys. 99, 08E909 (2006)

    Article  Google Scholar 

  14. A. Chaudhuri, K. Mandal, Mater. Res. Bull. 47, 1057–1061 (2012)

    Article  CAS  Google Scholar 

  15. Y.H. Lin, Q. Jiang, Y. Wang, C.W. Nan, Appl. Phys. Lett. 90, 172507 (2007)

    Article  Google Scholar 

  16. V.A. Khomchenko, D.A. Kiselev, I.K. Bdikin, V.V. Shvartsman, P. Borisov, W. Kleemann, J.M. Vieira, A.L. Kholkin, Appl. Phys. Lett. 93, 262905 (2008)

    Article  Google Scholar 

  17. G.L. Yuan, S. Wing Or, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006)

    Article  Google Scholar 

  18. S.B. Emery, C.J. Cheng, D. Kan, F.J. Rueckert, S.P. Alpay, V. Nagarajan, I. Takeuchi, B.O. Wells, Appl. Phys. Lett. 97, 152902 (2010)

    Article  Google Scholar 

  19. A. Reetu, S. Sanghi, J. Appl. Phys. 110(7), 073909 (2011)

    Article  Google Scholar 

  20. A.R. Makhdoom, M.J. Akhtar, M.A. Rafiq, M.M. Hassan, Ceram. Int. 38, 3829 (2012)

    Article  CAS  Google Scholar 

  21. M. Mahesh Kumar, A. Srinivas, S.V. Suryanarayana, J. Appl. Phys. 87, 855 (2000)

    Article  Google Scholar 

  22. J.R. Cheng, N. Li, L.E. Cross, J. Appl. Phys. 94, 5153 (2003)

    Article  CAS  Google Scholar 

  23. B.A. Tuttle, MRS Bull. 12, 40 (1987)

    Article  CAS  Google Scholar 

  24. H. Bouzidi, H. Chaker, M. Es-souni, C. Chaker, H. Khemakhem, J. Alloys Compd. 772, 877 (2019)

    Article  CAS  Google Scholar 

  25. P. Kubelka, J. Opt. Soc. Am. B 38, 448 (1948)

    Article  CAS  Google Scholar 

  26. J. Tauc, Abeles (North Holland, Amsterdam, 1972)

    Google Scholar 

  27. I. Hamberg, Granqvist J. Appl. Phys. 60, 123 (1986)

    Article  Google Scholar 

  28. J.C. Inkson, J. Phys. C 9, 1177 (1976)

    Article  CAS  Google Scholar 

  29. M. Saleem, D. Varshney, J. Alloys Compd. 708, 397 (2017)

    Article  CAS  Google Scholar 

  30. N. Sharma, K. Prabakar, S. Ilango, S. Dash, A. K. Tyagi, Adv. Mater. Proc. 2342–346 (2017).

  31. A.S. Hassanien, A.A. Akl, Appl. Phys. A 124, 752 (2018)

    Article  CAS  Google Scholar 

  32. V.R. Akshay, B. Arun, G. Mandal, M. Vasundhara, R.S.C. Phys, Chem. Chem. Phys. 21, 12991–13004 (2019)

    Article  CAS  Google Scholar 

  33. G.V. Makhnovets, G.L. Myronchuk, L.V. Piskach, B.V. Vidrynskyi, A.H. Kevshyn, Ukr. J. Phys. Opt. 19, 49 (2018)

    Article  Google Scholar 

  34. H. Matsuo, Y. Noguchi, M. Miyayama, M. Suzuki, A. Watanabe, S. Sasabe, T. Ozaki, S. Mori, S. Torii, T. Kamiyama, J. Appl. Phys. 108, 104103 (2010)

    Article  Google Scholar 

  35. D.A. Sanchez, N. Ortega, A. Kumar, G. Sreenivasulu, R.S. Katiyar, J.F. Scott, D.M. Evans, M.A. Arechavala, A. Schilling, J.M. Gregg, J. Appl. Phys. 113, 074105 (2013)

    Article  Google Scholar 

  36. S.A. Raza, S.U. Awan, S. Hussain, S.A. Shah, A.M. Iqbal, S.K. Hasanain, J. Appl. Phys. 128, 124101 (2020)

    Article  CAS  Google Scholar 

  37. Y. Sratta, S. Chandarak, M. Unruan, P. Kantha, B. Marungsri, R. Yimnirun, S. Pojprapai, Integr. Ferroelectr. 148, 67 (2013)

    Article  CAS  Google Scholar 

  38. J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  39. T.T.N. Vu, G. Teyssedre, S.L. Roy, C. Laurent, Technology 5, 27 (2017)

    Google Scholar 

  40. N. Rezlescu, E. Rezlescu, Phys. Status Solidi A 23, 575 (1974)

    Article  CAS  Google Scholar 

  41. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Sci Rep 5, 13645 (2015)

    Article  CAS  Google Scholar 

  42. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  CAS  Google Scholar 

  43. C. Zhang, Z. Zhou, Z. Tang, D. Ballo, C. Wang, G. Jian, J. Alloys Compd. 889, 161622 (2021)

    Article  Google Scholar 

  44. M. Nadeem, W. Khan, S. Khan, S. Husain, A. Ansari, J. Appl. Phys. 124, 164105 (2018)

    Article  Google Scholar 

  45. L. Thansanga, A. Shukla, N. Kumar, R.N.P. Choudhary, Appl. Phys. A 125, 764 (2019)

    Article  Google Scholar 

  46. V. Purohit, R.N.P. Choudhary, J. Solid State Chem. 292, 121724 (2020)

    Article  CAS  Google Scholar 

  47. T.H. Wang, C.S. Tu, H.Y. Chen, Y. Ding, T.C. Lin, Y.D. Yao, V.H. Schmidt, K.T. Wu, J. Appl. Phys. 109, 044101 (2011)

    Article  Google Scholar 

  48. S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R.K. Dwivedi, J. Appl, Phy. 123, 204102 (2018)

    Google Scholar 

  49. R.A.M. Gotardo, D.S.F. Viana, M. Olzon-Dionysio, S.D. Souza, D. Garcia, J.A. Eiras, M.F.S. Alves, L.F. Cotica, I.A. Santos, A.A. Coelho, J. Appl, Phy. 112, 104112 (2012)

    Google Scholar 

  50. Q. Zheng, L. Luo, K.H. Lam, N. Jiang, Y. Guo, D. Lin, J. Appl, Phy. 116, 184101 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Rajeev Rawat and Dr. V. Reddy from UGC-DAE-CSR-Indore (M.P.), India for providing dielectric and PE loop measurements, respectively, characterization facilities. Further the acknowledgment has extended to Dr.Basharat Want, VSM Lab, Department of Physics, University of Kashmir for magnetic characterization. Authors (NK) acknowledge the partial funding from MPCST, Bhopal.

Author information

Authors and Affiliations

Authors

Contributions

NK: conceptualization, writing—original draft, methodology, software. MS: data curation, writing-review and editing. NK: visualization, writing-review & editing. HSD: visualization, writing-review & editing, supervision.

Corresponding author

Correspondence to Nikita Karma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research data policy and data availability

All data generated and analyzed during this study are included in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karma, N., Saleem, M., Kaurav, N. et al. Investigation of optical, dielectric, and multiferroic properties of (1 − x) Bi0.9La0.1FeO3–(x) BaTiO3 composites. J Mater Sci: Mater Electron 33, 22986–22998 (2022). https://doi.org/10.1007/s10854-022-09067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09067-y

Navigation