Skip to main content

Advertisement

Log in

Brush-electroplated rGO@MnO2 composite supported on carbon cloth for flexible high-performance supercapacitor electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the emergence of intelligent society, high energy density and safety of flexible capacitive energy storage units are increasingly important in wearable devices. MnO2 as a flexible supercapacitor electrode material possesses the merits of high theoretical specific capacitance, low cost, and environmental friendliness. However, its poor conductivity, fragility, and low utilization hinder large-scale practical application. The rGO has excellent properties due to its unique sp2-hybridized carbon atom monolayer, such as high strength and high electrical conductivity. MnO2 can improve its own conductivity and specific capacitance by compounding with rGO. Both MnO2 and rGO can cooperate with each other to play their respective advantages and achieve a win-win situation. Herein, a facile brush electroplating technology is developed to fabricate flexible electrode materials composed of reduced-graphene oxide (rGO)@MnO2 composites grown on carbon cloth (CC) (denoted as rGO@MnO2/CC). A flexible rGO@MnO2/CC electrode prepared in an electrolyte with a rGO content of 1.0 g L−1 (denoted as 1.0-rGO@MnO2/CC) achieves high mass, area, and volume specific capacitances of 267 F g−1, 400 mF cm−2, and 13.3 F cm−3, respectively, at a charge–discharge rate of 0.25 A g−1. This is mainly due to the nanoporous structure formed by rGO and MnO2 nanosheets, which has higher electrical conductivity and good interfacial bonding. The rGO@MnO2/CC//active carbon (AC)/CC flexible aqueous asymmetric supercapacitor possesses a high energy density of 27.7 Wh kg−1 at a power density of 250 W kg−1 (0.9 mA cm−2) and a good capacitance retention of 76% after 10,000 charge–discharge cycles at a charge–discharge current density of 17.5 mA cm−2 (5 A g−1). This study provides a novel facile method for the large-scale fabrication of high-performance flexible aqueous supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Ghaemi, F. Ataherian, A. Zolfaghari, S.M. Jafari, Electrochim. Acta 53, 4607–4614 (2008)

    Article  CAS  Google Scholar 

  2. J.K. Chang, M.T. Lee, W.T. Tsai, M.J. Deng, H.F. Cheng, I.W. Sun, Langmuir 25, 11955–11960 (2009)

    Google Scholar 

  3. C. Xu, H. Du, B. Li, F. Kang, Y. Zeng, J. Electrochem. Soc. 156, A73 (2009)

    Article  CAS  Google Scholar 

  4. W. Raza, F. Ali, N. Raza, Y. Luo, K.-H. Kim, J. Yang, S. Kumar, A. Mehmood, E.E. Kwon, Nano Energy 52, 441–473 (2018)

    Article  CAS  Google Scholar 

  5. Q.Z. Zhang, D. Zhang, Z.C. Miao, X.L. Zhang, S.L. Chou, Small 14, e1702883 (2018)

    Article  CAS  Google Scholar 

  6. J.H. Jeong, J.W. Park, D.W. Lee, R.H. Baughman, S.J. Kim, Sci. Rep. 9, 11271 (2019)

    Article  CAS  Google Scholar 

  7. L. Dong, C. Xu, Y. Li, Z. Pan, G. Liang, E. Zhou, F. Kang, Q.H. Yang, Adv. Mater. 28, 9313–9319 (2016)

    Article  CAS  Google Scholar 

  8. T. Chen, S. Wang, Z. Yang, Q. Feng, X. Sun, L. Li, Z.S. Wang, H. Peng, Angew Chem. Int. Ed. Engl. 50, 1815–1819 (2011)

    Article  CAS  Google Scholar 

  9. Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, H. Yuan, D. Xiao, ACS Appl. Mater. Interfaces 6, 1773–1780 (2014)

    Article  CAS  Google Scholar 

  10. D.-Y. Wu, J.-J. Shao, Mater. Chem. Front. 5, 557–583 (2021)

    Article  CAS  Google Scholar 

  11. Z. Liu, Z.S. Wu, S. Yang, R. Dong, X. Feng, K. Mullen, Adv. Mater. 28, 2217–2222 (2016)

    Article  CAS  Google Scholar 

  12. M. Zhang, Y. Chen, D. Yang, J. Li, J. Energy Storage 29, 9 (2020)

    Google Scholar 

  13. Z. Zhao, T. Shen, Z. Liu, Q. Zhong, Y. Qin, J. Alloys Compd. 812, 152124 (2020)

  14. Y. Zhou, X. Cheng, F. Huang, Z. Sha, Z. Han, J. Chen, W. Yang, Y. Yu, J. Zhang, S. Peng, S. Wu, A. Rider, L. Dai, C.H. Wang, Carbon 172, 272–282 (2021)

    Article  CAS  Google Scholar 

  15. H. Zhang, J. Wei, Y. Yan, Q. Guo, L. Xie, Z. Yang, J. He, W. Qi, Z. Cao, X. Zhao, P. Pan, H. Li, K. Zhang, J. Zhao, X. Li, P. Zhang, K.W. Shah, J. Power Sources 450, 227616 (2020)

  16. N. Xu, J. Liu, J. Qiao, H. Huang, X.-D. Zhou, J. Power Sources 455, 227992 (2020)

  17. Z.H. Huang, Y. Song, D.Y. Feng, Z. Sun, X. Sun, X.X. Liu, ACS Nano 12, 3557–3567 (2018)

    Article  CAS  Google Scholar 

  18. B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Joule 3, 459–470 (2019)

    Article  CAS  Google Scholar 

  19. Q. Liu, J. Yang, X. Luo, Y. Miao, Y. Zhang, W. Xu, L. Yang, Y. Liang, W. Weng, M. Zhu, Ceram. Int. 46, 11874–11881 (2020)

    Article  CAS  Google Scholar 

  20. W. Zhang, Y. Yang, R. Xia, Y. Li, J. Zhao, L. Lin, J. Cao, Q. Wang, Y. Liu, H. Guo, Carbon 162, 114–123 (2020)

    Article  CAS  Google Scholar 

  21. W.-S. Li, M.-L. Chang, K.-C. Chuang, Y.-S. Li, J.-D. Luo, H.-C. Cheng, J. Electrochem. Soc. 166, A2194–A2198 (2019)

    Article  CAS  Google Scholar 

  22. D. Zheng, Y. Qiang, S. Xu, W. Li, S. Yu, S. Zhang, Appl. Phys. A 123, 213 (2017)

    Article  CAS  Google Scholar 

  23. G. Zhang, H. Yao, F. Zhang, Z. Gao, Q. Li, Y. Yang, X. Lu, Nano Res. 12, 1061–1069 (2019)

    Article  CAS  Google Scholar 

  24. J. Zhang, J. Sun, T. Ahmed Shifa, D. Wang, X. Wu, Y. Cui, Chem. Eng. J. 372, 1047–1055 (2019)

    Article  CAS  Google Scholar 

  25. L. Wang, M. Huang, S. Chen, L. Kang, X. He, Z. Lei, F. Shi, H. Xu, Z.-H. Liu, J. Mater. Chem. A 5, 19107–19115 (2017)

    Article  CAS  Google Scholar 

  26. K. Wu, Z. Ye, Y. Ding, Z. Zhu, X. Peng, D. Li, G. Ma, J. Power Sources 477, 229031 (2020)

  27. J. Ju, H. Zhao, W. Kang, N. Tian, N. Deng, B. Cheng, Electrochim. Acta 258, 116–123 (2017)

    Article  CAS  Google Scholar 

  28. X. Li, J. Shao, S.K. Kim, C. Yao, J. Wang, Y.R. Miao, Q. Zheng, P. Sun, R. Zhang, P.V. Braun, Nat. Commun. 9, 2578 (2018)

    Article  CAS  Google Scholar 

  29. R.K. Sahoo, A. Das, S. Singh, D. Lee, S.K. Singh, R.S. Mane, J.M. Yun, K.H. Kim, Prog. Nat. Sci. Mater. Int. 29, 410–415 (2019)

    Article  CAS  Google Scholar 

  30. M. Li, J. Yu, X. Wang, Z. Yang, Appl. Surf. Sci. 530, 147230 (2020)

  31. F. Xue, S. Wu, M. Wang, J. Wang, Integr. Ferroelectr. 190, 156–163 (2018)

    Article  CAS  Google Scholar 

  32. L. Lyu, K. Seong, J.M. Kim, W. Zhang, X. Jin, D.K. Kim, Y. Jeon, J. Kang, Y. Piao, Nano-Micro Lett. 11, 88 (2019)

  33. R. Nasser, G.-F. Zhang, J.-M. Song, Electrochim. Acta 345, 136198 (2020)

  34. O. Sadak, W. Wang, J. Guan, A.K. Sundramoorthy, S. Gunasekaran, ACS Appl. Nano Mater. 2, 4386–4394 (2019)

    Article  CAS  Google Scholar 

  35. S. Zhu, L. Li, J. Liu, H. Wang, T. Wang, Y. Zhang, L. Zhang, R.S. Ruoff, F. Dong, ACS Nano 12, 1033–1042 (2018)

    Article  CAS  Google Scholar 

  36. G. Yasin, M.A. Khan, W.Q. Khan, T. Mehtab, R.M. Korai, X. Lu, M.T. Nazir, M.N. Zahid, Results Phys. 14, 102404 (2019)

  37. Z. Ye, T. Li, G. Ma, X. Peng, J. Zhao, J. Power Sources 351, 51–57 (2017)

    Article  CAS  Google Scholar 

  38. M. Kazazi, Ceram. Int. 44, 10863–10870 (2018)

    Article  CAS  Google Scholar 

  39. Q. Ma, M. Yang, X. Xia, H. Chen, L. Yang, H. Liu, Electrochim. Acta 291, 9–17 (2018)

    Article  CAS  Google Scholar 

  40. J.-G. Wang, Y. Yang, Z.-H. Huang, F. Kang, J. Mater. Chem. 22, 16943–16949 (2012)

    Article  CAS  Google Scholar 

  41. C. Zhu, S. Guo, Y. Fang, L. Han, E. Wang, S. Dong, Nano Res. 4, 648–657 (2011)

    Article  CAS  Google Scholar 

  42. M. Cai, R.A. Outlaw, S.M. Butler, J.R. Miller, Carbon 50, 5481–5488 (2012)

    Article  CAS  Google Scholar 

  43. C. Xiong, T. Li, T. Zhao, A. Dang, X. Ji, H. Li, M. Etesami, Nano 13, 1850013 (2018)

  44. J.A. Argüello, J.M. Rojo, R. Moreno, Electrochim. Acta 294, 102–109 (2019)

    Article  CAS  Google Scholar 

  45. G. Yasin, M. Arif, T. Mehtab, M. Shakeel, M.A. Mushtaq, A. Kumar, T.A. Nguyen, Y. Slimani, M.T. Nazir, H. Song, Inorg. Chem. Front. 7, 402–410 (2020)

    Article  CAS  Google Scholar 

  46. Z.-H. Chang, D.-Y. Feng, Z.-H. Huang, X.-X. Liu, Chem. Eng. J. 337, 552–559 (2018)

    Article  CAS  Google Scholar 

  47. H. Sun, J. Pan, X. Yan, W. Shen, W. Zhong, X. Cheng, Ceram. Int. 45, 24802 (2019)

  48. H. Zhang, L. Lin, B. Wu, N. Hu, J. Power Sources 476, 228527 (2020)

  49. D. Yu, A. Kumar, T.A. Nguyen, M.T. Nazir, G. Yasin, ACS Sustain. Chem. Eng. 8, 13769–13776 (2020)

    Article  CAS  Google Scholar 

  50. G. Yasin, S. Ibrahim, S. Ibraheem, S. Ali, R. Iqbal, A. Kumar, M. Tabish, Y. Slimani, T.A. Nguyen, H. Xu, W. Zhao, J. Mater. Chem. A 9, 18222–18230 (2021)

    Article  CAS  Google Scholar 

  51. Z. Zhou, Q. Li, L. Yuan, L. Tang, X. Wang, B. He, P. Man, C. Li, L. Xie, W. Lu, L. Wei, Q. Zhang, Y. Yao, Energy Storage Mater. 25, 893–902 (2020)

    Article  Google Scholar 

  52. Y. Zhao, J. He, M. Dai, D. Zhao, X. Wu, B. Liu, J. Energy Chem. 45, 67–73 (2020)

    Article  Google Scholar 

  53. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, J. Mater. Chem. A 3, 21380–21423 (2015)

    Article  CAS  Google Scholar 

  54. G. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M.T. Nazir, H. Song, Energy Storage Mater. 25, 644–678 (2020)

    Article  Google Scholar 

  55. F.-Y. Su, Y.-B. He, B. Li, X.-C. Chen, C.-H. You, W. Wei, W. Lv, Q.-H. Yang, F. Kang, Nano Energy 1, 429–439 (2012)

    Article  CAS  Google Scholar 

  56. L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Nat. Commun. 4, 2923 (2013)

    Article  CAS  Google Scholar 

  57. Y. Wang, S. Fan, S. Wu, C. Wang, Z. Huang, L. Zhang, ACS Appl. Mater. Interfaces 10, 42372–42379 (2018)

    Article  CAS  Google Scholar 

  58. L. Chen, L. Chen, W. Zhai, D. Li, Y. Lin, S. Guo, J. Feng, L. Zhang, L. Song, P. Si, L. Ci, J. Power Sources 413, 302–309 (2019)

    Article  CAS  Google Scholar 

  59. Z. Meng, J. Xu, P. Yu, X. Hu, Y. Wu, Q. Zhang, Y. Li, L. Qiao, Y. Zeng, H. Tian, Chem. Eng. J. 400, 125966 (2020)

  60. Y. Zhang, L. Chen, C. Hao, X. Zheng, Y. Guo, L. Chen, K. Lai, Y. Zhang, L. Ci, J. Energy Chem. 46, 53–61 (2020)

    Article  Google Scholar 

  61. A.A. Mohammed, C. Chen, Z. Zhu, J. Power Sources 417, 1–13 (2019)

    Article  CAS  Google Scholar 

  62. Q. Hu, X. Jiang, M. He, Q. Zheng, K.H. Lam, D. Lin, Electrochim. Acta 338, 135896 (2020)

Download references

Funding

This study was supported by Key Technology Research and Development Program of Shandong (Grant No. 2017YFA0208200), National Natural Science Foundation of China (Grant Nos. 51862026, 51562027, 22022505 and 21872069), Aeronautical Science Foundation of China (Grant No. 2017ZF56027), Natural Science Foundation of Jiangxi Province (Grant No. 20192ACBL21048) and Key Research and Development Program of Jiangxi Province (Grant No. 20203BBE53069).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhiguo Ye or Duosheng Li.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Li, X., Zhu, Z. et al. Brush-electroplated rGO@MnO2 composite supported on carbon cloth for flexible high-performance supercapacitor electrodes. J Mater Sci: Mater Electron 33, 13326–13338 (2022). https://doi.org/10.1007/s10854-022-08271-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08271-0

Navigation