Skip to main content

Advertisement

Log in

Carbon cloth coated with NiO nanoparticles and graphene for flexible asymmetric supercapacitors

  • Invited Paper
  • FOCUS ISSUE: Two-dimensional Materials for Future Generation Energy Storage Applications
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Supercapacitors play a crucial role in energy storage field in virtue of their high power density. However, their flexibility and energy density are still challenging to be improved for wearable electronics and other applications. Herein, carbon cloth (CC) is used as flexible substrate to incorporate NiO nanoparticles with a hydrothermal method, and to coat with graphene by a dip-coating treatment. The NiO with high redox activity and CC with excellent flexibility and conductivity enable fast ionic/charge transfer characteristics and superior electrochemical performances. Moreover, the flexible asymmetric supercapacitors (FASCs) are assembled, demonstrating a large potential window of 1.5 V, a high energy density of 33.1 Wh kg−1 at the power density of 750.0 W kg−1, a high capacitance retention of 92.6% after 10,000 cycles, and good flexibility. This work demonstrates great potential of the as-fabricated FASCs for future flexible wearable energy storage devices.

Graphical abstract

Carbon cloth (CC) was used as flexible substrate to incorporate NiO nanoparticles with a hydrothermal method (named as NiO/CC) and to coat with graphene by a dip-coating treatment (named as G/CC). The flexible, conductive CC remarkably enhanced the conductivity and structural stability of electrodes. Moreover, the as-fabricated flexible supercapacitors demonstrated a large potential window of 1.5 V, a high energy density of 33.1 Wh kg−1 at the power density of 750.0 W kg−1, a high capacitance retention of 92.6% after 10,000 cycles, and good flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. C. Choi, D.S. Ashby, D.M. Butts, R.H. DeBlock, Q. Wei, J. Lau, B. Dunn, Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5(1), 5–19 (2020)

    Article  Google Scholar 

  2. G. Wang, Z. Lu, Y. Li, L. Li, H. Ji, A. Feteira, D. Zhou, D. Wang, S. Zhang, I.M. Reaney, Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121(10), 6124–6172 (2021)

    Article  CAS  Google Scholar 

  3. G. Pacchioni, Superelectrodes for supercapacitors. Nat. Rev. Mater. 4(10), 625–625 (2019)

    Article  CAS  Google Scholar 

  4. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015)

    Article  CAS  Google Scholar 

  5. M. Fu, R. Lv, Y. Lei, M. Terrones, Ultralight flexible electrodes of nitrogen-doped carbon macrotube sponges for high-performance supercapacitors. Small 17(1), 2004827 (2021)

    Article  CAS  Google Scholar 

  6. M. Fu, W. Chen, X. Zhu, Q. Liu, One-step preparation of one dimensional nickel ferrites/graphene composites for supercapacitor electrode with excellent cycling stability. J. Power Sources 396, 41–48 (2018)

    Article  CAS  Google Scholar 

  7. Z. Zhu, F. Gao, Z. Zhang, Q. Zhuang, H. Yu, Y. Huang, Q. Liu, M. Fu, Synthesis of the cathode and anode materials from discarded surgical masks for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 603, 157–164 (2021)

    Article  CAS  Google Scholar 

  8. J.V. Vaghasiya, C.C. Mayorga-Martinez, M. Pumera, Flexible energy generation and storage devices: focus on key role of heterocyclic solid-state organic ionic conductors. Chem. Soc. Rev. 49(21), 7819–7844 (2020)

    Article  CAS  Google Scholar 

  9. L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38(9), 2520–2531 (2009)

    Article  CAS  Google Scholar 

  10. M. Fu, J. Huang, S. Feng, T. Zhang, P.-C. Qian, W.-Y. Wong, One-step solid-state pyrolysis of bio-wastes to synthesize multi-hierarchical porous carbon for ultra-long life supercapacitors. Mater. Chem. Front. 5(5), 2320–2327 (2021)

    Article  CAS  Google Scholar 

  11. Z. Zhu, Z. Zhang, Q. Zhuang, F. Gao, Q. Liu, X. Zhu, M. Fu, Growth of MnCo2O4 hollow nano-spheres on activated carbon cloth for flexible asymmetric supercapacitors. J. Power Sources 492, 229669 (2021)

    Article  CAS  Google Scholar 

  12. X. Zhou, X. Gao, M. Liu, C. Wang, F. Chu, Synthesis of 3D phosphorus doped graphene foam in carbon cloth to support V2O5/CoMoS4 hybrid for flexible all-solid-state asymmetry supercapacitors. J. Power Sources 453, 227902 (2020)

    Article  CAS  Google Scholar 

  13. Q. Zhuang, W. Li, Z. Zhu, H. Yu, W. Chen, Y. Jing, M. Fu, Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors. J. Alloys Compd. 906, 164275 (2022)

    Article  CAS  Google Scholar 

  14. S. Yan, K.P. Abhilash, L. Tang, M. Yang, Y. Ma, Q. Xia, Q. Guo, H. Xia, Research advances of amorphous metal oxides in electrochemical energy storage and conversion. Small 15(4), 1804371 (2019)

    Google Scholar 

  15. Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang, M.S. Islam, X. Lu, L. Dai, R. Amal, C.H. Wang, Z. Han, Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 14(4), 1854–1896 (2021)

    Article  CAS  Google Scholar 

  16. M.F. El-Kady, Y. Shao, R.B. Kaner, Graphene for batteries, supercapacitors and beyond. Nat. Rev. Mater. 1(7), 16033 (2016)

    Article  CAS  Google Scholar 

  17. Z. Zhao, K. Xia, Y. Hou, Q. Zhang, Z. Ye, J. Lu, Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chem. Soc. Rev. 50(22), 12702–12743 (2021)

    Article  CAS  Google Scholar 

  18. Y. Du, L. Huang, Y. Wang, K. Yang, J. Tang, Y. Wang, M. Cheng, Y. Zhang, M.J. Kipper, L.A. Belfiore, W.S. Ranil, Recent developments in graphene-based polymer composite membranes: preparation, mass transfer mechanism, and applications. J. Appl. Polym. Sci. 136(28), 47761 (2019)

    Article  Google Scholar 

  19. Z. Han, X. Xiao, H. Qu, M. Hu, C. Au, A. Nashalian, X. Xiao, Y. Wang, L. Yang, F. Jia, T. Wang, Z. Ye, P. Servati, L. Huang, Z. Zhu, J. Tang, J. Chen, Ultrafast and selective nanofiltration enabled by graphene oxide membranes with unzipped carbon nanotube networks. ACS Appl. Mater. Interface 14(1), 1850–1860 (2022)

    Article  CAS  Google Scholar 

  20. Z. Zhang, L. Huang, Y. Wang, K. Yang, Y. Du, Y. Wang, M.J. Kipper, L.A. Belfiore, J. Tang, Theory and simulation developments of confined mass transport through graphene-based separation membranes. Phys. Chem. Chem. Phys. 22(11), 6032–6057 (2020)

    Article  CAS  Google Scholar 

  21. J. El Nady, A. Shokry, M. Khalil, S. Ebrahim, A.M. Elshaer, M. Anas, One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci. Rep. 12(1), 3611–3611 (2022)

    Article  Google Scholar 

  22. C. Lu, X. Chen, Latest advances in flexible symmetric supercapacitors: from material engineering to wearable applications. Acc. Chem. Res. 53(8), 1468–1477 (2020)

    Article  CAS  Google Scholar 

  23. L. Wang, H. Yang, X. Liu, R. Zeng, M. Li, Y. Huang, X. Hu, Constructing hierarchical tectorum-like alpha-Fe2O3/PPy nanoarrays on carbon cloth for solid-state asymmetric supercapacitors. Angew. Chem. Int. Edit. 56(4), 1105–1110 (2017)

    Article  CAS  Google Scholar 

  24. X. Han, J. Li, J. Lu, S. Luo, J. Wan, B. Li, C. Hu, X. Cheng, High mass-loading NiCo-LDH nanosheet arrays grown on carbon cloth by electrodeposition for excellent electrochemical energy storage. Nano Energy 86, 106079 (2021)

    Article  CAS  Google Scholar 

  25. K.A. Owusu, L. Qu, J. Li, Z. Wang, K. Zhao, C. Yang, K.M. Hercule, C. Lin, C. Shi, Q. Wei, L. Zhou, L. Mai, Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat. Commun. 8, 14264 (2017)

    Article  Google Scholar 

  26. B.P. Reddy, K. Mallikarjuna, M. Kumar, M.C. Sekhar, Y. Suh, S.-H. Park, Highly porous metal organic framework derived NiO hollow spheres and flowers for oxygen evolution reaction and supercapacitors. Ceram. Int. 47(3), 3312–3321 (2021)

    Article  CAS  Google Scholar 

  27. K.K. Sahu, R.K. Sahoo, L.D. Beshra, M. Mohapatra, Facile synthesis of nickel oxalate@carbon as electrical double layer and its derived nickel oxide as pseudo-type supercapacitor electrodes. Ionics 27(2), 819–832 (2021)

    Article  CAS  Google Scholar 

  28. K. Xu, S. Ma, Y. Shen, Q. Ren, J. Yang, X. Chen, J. Hu, CuCo2O4 nanowire arrays wrapped in metal oxide nanosheets as hierarchical multicomponent electrodes for supercapacitors. Chem. Eng. J. 369, 363–369 (2019)

    Article  CAS  Google Scholar 

  29. Z. Fang, S.U. Rehman, M. Sun, Y. Yuan, S. Jin, H. Bi, Hybrid NiO–CuO mesoporous nanowire array with abundant oxygen vacancies and a hollow structure as a high-performance asymmetric supercapacitor. J. Mater. Chem. A 6(42), 21131–21142 (2018)

    Article  CAS  Google Scholar 

  30. M. Fu, Z. Zhu, Z. Zhang, Q. Zhuang, W. Chen, Q. Liu, Microwave deposition synthesis of Ni(OH)2/sorghum stalk biomass carbon electrode materials for supercapacitors. J. Alloys Compd. 846, 156376 (2020)

    Article  CAS  Google Scholar 

  31. X. Li, R. Ding, W. Shi, Q. Xu, D. Ying, Y. Huang, E. Liu, Hierarchical porous Co(OH)F/Ni(OH)2: a new hybrid for supercapacitors. Electrochim. Acta 265, 455–473 (2018)

    Article  CAS  Google Scholar 

  32. C. Zhao, R. Wang, Y. Zhang, L. Chen, T. Li, X. Deng, P. Zhang, X. Lu, Electrostatic force-driven anchoring of Ni(OH)2 nanocrystallites on single-layer MoS2 for high-performance asymmetric hybrid supercapacitors. Electrochim. Acta 320, 134591 (2019)

    Article  CAS  Google Scholar 

  33. Q. He, H. Wang, N. Lun, Y. Qi, J. Liu, J. Feng, J. Qiu, Y.J. Bai, Fabricating a Mn3O4/Ni(OH)2 nanocomposite by water-boiling treatment for use in asymmetric supercapacitors as an electrode material. ACS Sustain. Chem. Eng. 6(11), 15688–15696 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2021MB095), Science and Technology Project of Qingdao West Coast New Area (Grant No. 2020-91), Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team [Hydrogen energy chemistry innovation team].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Gao or Ruitao Lv.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Yang, J., Gao, M. et al. Carbon cloth coated with NiO nanoparticles and graphene for flexible asymmetric supercapacitors. Journal of Materials Research 37, 3922–3930 (2022). https://doi.org/10.1557/s43578-022-00640-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00640-z

Navigation