Skip to main content
Log in

Investigation of physical and antibacterial characteristics of ZnCo2O4 semiconductor films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A ZnCo2O4 film is prepared using the sol–gel method. The sample is subjected to heat treatment under nitrogen at 200–600 °C. When the sample is annealed at 200 °C, it exhibits an amorphous Zn–Co–O film with low surface roughness, high light transmittance, and no conductivity. When the sample is annealed at 250 °C, a spinel ZnCo2O4 film is formed. With a gradual increase in temperature to 600 °C, the degree of crystal order, crystal size, surface polygonal structure, and root mean square roughness of the ZnCo2O4 film increase. The transmittances of the spinel ZnCo2O4 are 58.98–43.68% at a wavelength of 550 nm, which indicate a translucent characteristic. For the films annealed at 300 and 350 °C, the film resistivities are 8.22 and 24.26 Ω cm, respectively, and the corresponding carrier concentrations are 2.98 × 1018 and 2.48 × 1018 cm−3. The ZnCo2O4 film is a p-type semiconductor. The ZnCo2O4 film exhibits high antibacterial properties against both Escherichia coli and Staphylococcus aureus under bright and dark conditions (no photocatalysis), with antibacterial rates of 99.86% to 99.99%. Therefore, ZnCo2O4 demonstrates immense potential for antibacterial and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, Solid State Commun. 129, 627 (2004)

    Article  CAS  Google Scholar 

  2. J.B. Goondenough, Magnetism and the Chemical Bond (Wiley, New York, 1963), p. 202

    Google Scholar 

  3. E.P. Wohlfarth (ed.), Ferromagnetic Materials, Chapter 4 (North-Holland, Amsterdam, 1982)

    Google Scholar 

  4. A. Amirzhanova, N. Akmanşen, I. Karakaya, Ö. Dag, ACS Appl Energy Mater. 4(3), 2769 (2021)

    Article  CAS  Google Scholar 

  5. H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo, J. Appl. Phys. 95, 7387 (2004)

    Article  CAS  Google Scholar 

  6. X. Wei, D. Chen, W. Tang, Mater. Chem. Phys. 103, 54 (2007)

    Article  CAS  Google Scholar 

  7. M. Tortosa, F.J. Manjon, M. Mollar, B. Mari, J. Phys. Chem. Solids 73, 1111 (2012)

    Article  CAS  Google Scholar 

  8. B. Chi, J. Li, X. Yang, H. Lin, N. Wang, Electrochim. Acta 50, 2059 (2005)

    Article  CAS  Google Scholar 

  9. W. Fu, X. Li, C. Zhao, Y. Liu, P. Zhang, J. Zhou, X. Pan, E. Xie, Mater. Lett. 149, 1 (2015)

    Article  CAS  Google Scholar 

  10. J.A. Rajesh, B.K. Min, J.H. Kim, H. Kim, K.S. Ahn, J. Electrochem. Soc. 163(10), A2418 (2016)

    Article  CAS  Google Scholar 

  11. Q. Xie, D. Zeng, Y. Ma, L. Lin, L. Wang, D.L. Peng, Electrochim. Acta 169, 283 (2015)

    Article  CAS  Google Scholar 

  12. X. Song, Q. Ru, Y. Mo, S. Hu, B. An, J. Alloys Compd. 606, 219 (2014)

    Article  CAS  Google Scholar 

  13. R. Zhao, Q. Li, C. Wang, L. Yin, Electrochim. Acta 197, 58 (2016)

    Article  CAS  Google Scholar 

  14. H. Ren, W. Wang, S.W. Joo, Y. Sun, C. Gu, Mater. Res. Bull. 111, 34 (2019)

    Article  CAS  Google Scholar 

  15. L. Jinlong, G. Wenli, L. Tongxiang, Ceram. Int. 43, 6168 (2017)

    Article  CAS  Google Scholar 

  16. A.J.C. Mary, A.C. Bose, Appl. Surf. Sci. 425, 201 (2017)

    Article  CAS  Google Scholar 

  17. J. Bhagwan, G. Nagaraju, B. Ramulu, J.S. Yu, J. Electrochem. Soc. 166(2), A217 (2019)

    Article  CAS  Google Scholar 

  18. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  19. F. Song, L. Huang, D. Chen, W. Tang, Mater. Lett. 62, 543 (2008)

    Article  CAS  Google Scholar 

  20. H. Behzad, F.E. Ghodsi, J. Mater. Sci. 27, 6096 (2016)

    CAS  Google Scholar 

  21. Z. Chen, X.L. Wen, L.W. Niu, M. Duan, Y.J. Zhang, X.L. Dong, R.L. Zhang, C.L. Chen, Thin Solid Films 573, 90 (2014)

    Article  CAS  Google Scholar 

  22. X.L. Wen, Z. Chen, E.H. Liu, X. Lin, Appl. Surf. Sci. 357, 1212 (2015)

    Article  CAS  Google Scholar 

  23. B. Cui, H. Lin, X.C. Zhao, J.B. Li, W.D. Li, Acta. Phys. Chim. Sin. 27, 2411 (2011)

    Article  CAS  Google Scholar 

  24. M. Baskey, R. Maiti, S.K. Saha, D. Chakravorty, J. Appl. Phys. 115, 094306 (2014)

    Article  CAS  Google Scholar 

  25. J.I. Pankove, Optical Processes in Semiconductors (Prentice-Hall Inc., Englewood Cliffs, NJ, 1971), pp. 34 and 57

  26. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (Oxford, New York, 1979), p. 288

    Google Scholar 

  27. K. Liu, X. Li, L. Liang, J. Wu, X. Jiao, J. Xu, Y. Sun, Y. Xie, Nano Res. 11, 2897 (2018)

    Article  CAS  Google Scholar 

  28. S. Gilani, M. Ghorbanpour, A.P. Jadid, J. Nanostruct. Chem. 6, 183 (2016)

    Article  CAS  Google Scholar 

  29. J. Pasqueta, Y. Chevalierb, J. Pelletierb, E. Couvala, D. Bouviera, M.A. Bolzingerb, Colloid. Surf. A 457, 263 (2014)

    Article  CAS  Google Scholar 

  30. L. Pan, Q. Zhu, D. Tian, J. Sol-Gel Sci. Technol. 89, 1 (2019)

    Article  CAS  Google Scholar 

  31. K.P. Hwang, H.C. Lin, Y.Z. Su, W.P. Wu, R.S. Yu, J. Sol-Gel Sci. Technol. 97, 441 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the China Medical University Hospital and China Medical University for financial support for this research under Contract No. ASIA-106-CMUH-09 and DMR-106-048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruei-Sung Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, KP., Lin, HC., Zham, MH. et al. Investigation of physical and antibacterial characteristics of ZnCo2O4 semiconductor films. J Mater Sci: Mater Electron 33, 2173–2182 (2022). https://doi.org/10.1007/s10854-021-07424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07424-x

Navigation