Skip to main content
Log in

Electromagnetic response and microwave absorption properties of CF/Fe3O4 absorbing composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a unique three-dimensional framework structure of carbon foam (CF) was obtained by carbonizing melamine foam at a certain temperature, and its dielectric properties were studied. Then the microwave absorption properties were further improved by adding Fe3O4 magnetic nanoparticles. CF/Fe3O4 absorbing composites were obtained. The CF/Fe3O4 absorbing composites can obtained different electromagnetic parameters of CF/Fe3O4 by adjusting the addition amount of Fe3O4 nanoparticles. When the mass ratio of CF to Fe3O4 is 6:4, the microwave absorption performance is the best. With a thickness of 1.5 mm and a load of 20 wt% of the absorbing material, the reflection loss (RL) can reach − 19.0 dB at 15.7 GHz. When the thickness is 1.5 mm, the effective absorption bandwidth can reach 4.8 GHz (13–17.8 GHz). By adjusting the thickness, it can achieve effective absorption in the range of 3.5–18 GHz. The microwave absorption performance of the synthesized CF/Fe3O4 composites are attributed to the three-dimensional porous structure, which realizes multiple scattering and reflection. Various heterogeneous interfaces such as carbon-air and carbon-Fe3O4 nanoparticles lead to the abundant interface polarization. Not only that, the combination of carbon materials and magnetic particles also further improves its impedance matching performance. This work has not only obtained carbon-based/magnetic particle composite materials with relatively good performance, but also provided new ideas for the design of high-performance magnetic/dielectric composite absorbing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C. Luo, T. Jiao, Y. Tang et al., Excellent electromagnetic wave absorption of iron-containing SiBCN ceramics at 1158 K high-temperature. Adv. Eng. Mater. 20(6), 1701168 (2018). https://doi.org/10.1002/adem.201701168

    Article  CAS  Google Scholar 

  2. X. Chen, Z. Jia, A. Feng et al., Hierarchical Fe3O4@ carbon@ MnO2 hybrid for electromagnetic wave absorber. J. Colloid Interface Sci. 553, 465–474 (2019). https://doi.org/10.1016/j.jcis.2019.06.058

    Article  CAS  Google Scholar 

  3. Z. Gao, B. Xu, M. Ma et al., Electrostatic self-assembly synthesis of ZnFe2O4 quantum dots (ZnFe2O4@ C) and electromagnetic microwave absorption. Compos. B Eng. 179, 107417 (2019). https://doi.org/10.1016/j.compositesb.2019.107417

    Article  CAS  Google Scholar 

  4. Y. Huangfu, K. Ruan, H. Qiu et al., Fabrication and investigation on the PANI/MWCNT/thermally annealed graphene aerogel/epoxy electromagnetic inter-erence shielding nanocomposites. Compos. A Appl. Sci. Manuf. 121, 265–272 (2019). https://doi.org/10.1016/j.compositesa.2019.03.041

    Article  CAS  Google Scholar 

  5. W. Wu, C. Yu, J. Chen et al., Fluorometric detection of copper ions using click chemistry and the target-induced conjunction of split DNAzyme fragments. Int. J. Environ. Anal. Chem. 100(3), 324–332 (2020). https://doi.org/10.1080/03067319.2019.1636977

    Article  CAS  Google Scholar 

  6. X. Wang, K. Maeda, A. Thomas et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8(1), 76–80 (2009). https://doi.org/10.1142/9789814317665_0039

    Article  CAS  Google Scholar 

  7. M. Liu, P. Xia, L. Zhang et al., Enhanced photocatalytic H2-production activity of g-C3N4 nanosheets via optimal photodeposition of Pt as cocatalyst. ACS Sustain. Chem. Eng. 6(8), 10472–10480 (2018). https://doi.org/10.1021/acssuschemeng.8b01835

    Article  CAS  Google Scholar 

  8. W. Yu, J. Chen, T. Shang et al., Direct Z-scheme g-C3N4/WO3 photocatalyst with atomically defined junction for H2 production. Appl. Catal. B 219, 693–704 (2017). https://doi.org/10.1016/j.apcatb.2017.08.018

    Article  CAS  Google Scholar 

  9. K. Dai, L. Lu, C. Liang et al., Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Appl. Catal. B 156, 331–340 (2014). https://doi.org/10.1016/j.apcatb.2014.03.039

    Article  CAS  Google Scholar 

  10. S.Z. Wu, K. Li, W.D. Zhang, On the heterostructured photocatalysts Ag3VO4/g-C3N4 with enhanced visible light photocatalytic activity. Appl. Surf. Sci. 324, 324–331 (2015). https://doi.org/10.1016/j.apsusc.2014.10.161

    Article  CAS  Google Scholar 

  11. F. Mei, K. Dai, J. Zhang et al., Construction of Ag SPR-promoted step-scheme porous g-C3N4/Ag3VO4 heterojunction for improving photocatalytic activity. Appl. Surf. Sci. 488, 151–160 (2019). https://doi.org/10.1016/j.apsusc.2019.05.257

    Article  CAS  Google Scholar 

  12. J. Zhang, Z. Ma, Ag3VO4/AgI composites for photocatalytic degradation of dyes and tetracycline hydrochloride under visible light. Mater. Lett. 216, 216–219 (2018). https://doi.org/10.1016/j.matlet.2018.01.035

    Article  CAS  Google Scholar 

  13. G. Sun, H. Xu, H. Li et al., Fabrication and characterization of visible-light-induced photocatalyst Gd2O3/Ag3VO4. React. Kinet. Mech. Catal. 99(2), 471–484 (2010). https://doi.org/10.1007/s11144-010-0152-8

    Article  CAS  Google Scholar 

  14. X. Hu, C. Hu, Selective photocatalytic degradation of azodyes in NiO/Ag3VO4 suspension. J. Chem. Technol. Biotechnol. 85(11), 1522–1527 (2010). https://doi.org/10.1002/jctb.2462

    Article  CAS  Google Scholar 

  15. A. Sheng, Y. Yang, D.X. Yan et al., Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon 167, 530–540 (2020). https://doi.org/10.1016/j.carbon.2020.05.107

    Article  CAS  Google Scholar 

  16. M. Wu, A.K. Darboe, X. Qi et al., Optimization, selective and efficient production of CNTs/CoxFe3−xO4 core/shell nanocomposites as outstanding microwave absorbers. J. Mater. Chem. C 8(34), 11936–11949 (2020). https://doi.org/10.1039/D0TC01970D

    Article  CAS  Google Scholar 

  17. C. Li, Z. Li, X. Qi et al., A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 605, 13–22 (2022). https://doi.org/10.1016/j.jcis.2021.07.054

    Article  CAS  Google Scholar 

  18. P. Liu, S. Gao, G. Zhang et al., Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31, 2112 (2021). https://doi.org/10.1002/adfm.202102812

    Article  CAS  Google Scholar 

  19. L. Zhang, Y. He, P. Ye et al., Enhanced photodegradation activity of Rhodamine B by Co3O4/Ag3VO4 under visible light irriadiation. Mater. Sci. Eng., B 178(1), 45–52 (2013). https://doi.org/10.1016/j.mseb.2012.10.011

    Article  CAS  Google Scholar 

  20. M. Yan, Y. Wu, F. Zhu et al., The fabrication of a novel Ag3VO4/WO3 heterojunction with enhanced visible light efficiency in the photocatalytic degradation of TC. Phys. Chem. Chem. Phys. 18(4), 3308–3315 (2016). https://doi.org/10.1039/C5CP05599G

    Article  CAS  Google Scholar 

  21. Y. Xu, L. Jing, X. Chen et al., Novel visible-light-driven Fe2O3/Ag3VO4 composite with enhanced photocatalytic activity toward organic pollutants degradation. RSC Adv. 6(5), 3600–3607 (2016). https://doi.org/10.1039/C5RA22912J

    Article  CAS  Google Scholar 

  22. X. Zou, Y. Dong, X. Zhang et al., Synthesize and characterize of Ag3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 366, 173–180 (2016). https://doi.org/10.1016/j.apsusc.2016.01.034

    Article  CAS  Google Scholar 

  23. A. Ameli, M. Nofar, C.B. Park et al., Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 71, 206–217 (2014). https://doi.org/10.1016/j.carbon.2014.01.031

    Article  CAS  Google Scholar 

  24. T. Zhu, L. Huang, Y. Song et al., Modification of Ag3VO4 with graphene-like MoS 2 for enhanced visible-light photocatalytic property and stability. New J. Chem. 40(3), 2168–2177 (2016). https://doi.org/10.1039/C5NJ02094H

    Article  CAS  Google Scholar 

  25. J. Zhang, Z. Ma, Ag3VO4/BiOIO3 heterojunction with enhanced visible-light-driven catalytic activity. J. Taiwan Inst. Chem. Eng. 88, 177–185 (2018). https://doi.org/10.1016/j.jtice.2018.03.054

    Article  CAS  Google Scholar 

  26. S. Li, S. Hu, W. Jiang et al., Ag3VO4 nanoparticles decorated Bi2O2CO3 micro-flowers: An efficient visible-light-driven photocatalyst for the removal of toxic contaminants. Front. Chem. 6, 255 (2018). https://doi.org/10.3389/fchem.2018.00255

    Article  CAS  Google Scholar 

  27. K. Wangkawong, S. Phanichphant, D. Tantraviwat et al., CoTiO3/Ag3VO4 composite: a study on the role of CoTiO3 and the active species in the photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 454, 210–215 (2015). https://doi.org/10.1016/j.jcis.2015.05.025

    Article  CAS  Google Scholar 

  28. A.V. Trukhanov, V.A. Turchenko, V.G. Kostishin et al., The origin of the dual ferroic properties in quasi-centrosymmetrical SrFe12−xInxO19 hexaferrites. J. Alloy. Compd. 886, 161249 (2021). https://doi.org/10.1016/j.jallcom.2021.161249

    Article  CAS  Google Scholar 

  29. D.I. Tishkevich, A.I. Vorobjova, D.A. Vinnik, Template assisted ni nanowires fabrication, in Materials science forum, vol. 946, (Trans Tech Publications Ltd, Switzerland, 2019), pp. 235–241

    Google Scholar 

  30. Y. Slimani, N.A. Algarou, M.A. Almessiere et al., Fabrication of exchange coupled hard/soft magnetic nanocomposites: correlation between composition, magnetic, optical and microwave properties. Arab. J. Chem. 14(3), 102992 (2021). https://doi.org/10.1016/j.arabjc.2021.102992

    Article  CAS  Google Scholar 

  31. C. Zhang, Y. Chen, H. Li et al., Facile fabrication of three-dimensional lightweight RGO/PPy nanotube/Fe3O4 aerogel with excellent electromagnetic wave absorption properties. ACS Omega 3(5), 5735–5743 (2018). https://doi.org/10.1021/acsomega.8b00414

    Article  CAS  Google Scholar 

  32. J. Li, S. Yang, P. Jiao et al., Three-dimensional macroassembly of hybrid C@ CoFe nanoparticles/reduced graphene oxide nanosheets towards multifunctional foam. Carbon 157, 427–436 (2020). https://doi.org/10.1016/j.carbon.2019.10.074

    Article  CAS  Google Scholar 

  33. J. Tang, N. Liang, L. Wang et al., Three-dimensional nitrogen-doped reduced graphene oxide aerogel decorated with Ni nanoparticles with tunable and unique microwave absorption. Carbon 152, 575–586 (2019). https://doi.org/10.1016/j.carbon.2019.06.049

    Article  CAS  Google Scholar 

  34. V. Mishra, A. Sati, M.K. Warshi et al., Effect of electron irradiation on the optical properties of SrTiO3: an experimental and theoretical investigations. Mater. Res. Express 5(3), 036210 (2018). https://doi.org/10.1088/2053-1591/aab6f5

    Article  CAS  Google Scholar 

  35. C.G. Van de Walle, J. Neugebauer, First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95(8), 3851–3879 (2004). https://doi.org/10.1063/1.1682673

    Article  CAS  Google Scholar 

  36. H.I. Berrezoug, A.E. Merad, M. Aillerie et al., First principle study of structural stability, electronic structure and optical properties of Ga doped ZnO with different concentrations. Mater. Res. Express 4(3), 035901 (2017). https://doi.org/10.1088/2053-1591/aa6076

    Article  CAS  Google Scholar 

  37. X. Weng, B. Li, Y. Zhang et al., Synthesis of flake shaped carbonyl iron/reduced graphene oxide/polyvinyl pyrrolidone ternary nanocomposites and their microwave absorbing properties. J. Alloy. Compd. 695, 508–519 (2017). https://doi.org/10.1016/j.jallcom.2016.11.083

    Article  CAS  Google Scholar 

  38. J. Frenkel, J. Doefman, Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126(3173), 274–275 (1930). https://doi.org/10.1038/126274a0

    Article  Google Scholar 

  39. G. Wang, Z. Gao, G. Wan et al., High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7(5), 704–716 (2014)

    Article  CAS  Google Scholar 

  40. S. Singh, S. Shukla, A. Kumar et al., Influence of Zn dispersion in SiC on electromagnetic wave absorption characteristics. J. Alloy. Compd. 738, 448–460 (2018). https://doi.org/10.1016/j.jallcom.2017.12.190

    Article  CAS  Google Scholar 

  41. X.X. Wang, W.Q. Cao, M.S. Cao et al., Assembling nano–microarchitecture for electromagnetic absorbers and smart devices. Adv. Mater. 32(36), 2002112 (2020). https://doi.org/10.1002/adma.202002112

    Article  CAS  Google Scholar 

  42. S.K. Singh, H. Prakash, M.J. Akhtar et al., Lightweight and high-performance microwave absorbing heteroatom-doped carbon derived from chicken feather fibers. ACS Sustain. Chem. Eng. 6(4), 5381–5393 (2018). https://doi.org/10.1021/acssuschemeng.8b00183

    Article  CAS  Google Scholar 

  43. D. Estevez, F.X. Qin, L. Quan et al., Complementary design of nano-carbon/magnetic microwire hybrid fibers for tunable microwave absorption. Carbon 132, 486–494 (2018). https://doi.org/10.1016/j.carbon.2018.02.083

    Article  CAS  Google Scholar 

  44. P. Liu, Y. Zhang, J. Yan et al., Synthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 368, 285–298 (2019). https://doi.org/10.1016/j.cej.2019.02.193

    Article  CAS  Google Scholar 

  45. P. Liu, S. Gao, Y. Wang et al., Core–shell CoNi@ graphitic carbon decorated on B, N-codoped hollow carbon polyhedrons toward lightweight and high-efficiency microwave attenuation. ACS Appl. Mater. Interfaces. 11(28), 25624–25635 (2019). https://doi.org/10.1021/acsami.9b08525

    Article  CAS  Google Scholar 

  46. D. Xu, Y. Yang, K. Le et al., Bifunctional Cu9S5/C octahedral composites for electromagnetic wave absorption and supercapacitor applications. Chem. Eng. J. 417, 129350 (2021). https://doi.org/10.1016/j.cej.2021.129350

    Article  CAS  Google Scholar 

  47. J. Qiao, X. Zhang, C. Liu et al., Non-magnetic bimetallic MOF-derived porous carbon-wrapped TiO2/ZrTiO4 composites for efficient electromagnetic wave absorption. Nano-micro Lett. 13(1), 1–16 (2021). https://doi.org/10.1007/s40820-021-00606-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation Youth Fund of Hebei Province (E2016209327), Basic research expenses Project for Provincial Colleges and Universities (JYG2021001), Undergraduate Innovation Project of North China University of Science and Technology (X2020067) and Applied Basic Research Project of Tangshan City in 2021 (Preparation and Properties of SiC/C/Fe3O4 Multiphase Absorbing Materials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Yin, X., Zhang, Y. et al. Electromagnetic response and microwave absorption properties of CF/Fe3O4 absorbing composites. J Mater Sci: Mater Electron 33, 2152–2165 (2022). https://doi.org/10.1007/s10854-021-07422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07422-z

Navigation