Skip to main content

Advertisement

Log in

Thermally conductive composite phase change materials with excellent thermal management capability for electronic devices

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the innovation of electronics industry and the advancement in 5G technology, the overheating problem has become an urgent obstacle to further realize the high performance and multi-function of electronic devices. Thus, it is essential to develop efficient thermal management materials to realize timely and effective heat dissipation. The thermal management systems based on phase change materials (PCMs) have received extensive attention in recent years. In this work, composite PCMs with a high phase change enthalpy of 149.56 J g−1, multiple phase change characteristics, a high thermal conductivity of 1.28 Wm−1 K−1, and excellent shape stability were fabricated by the means of cross-linked polymer swelling strategy. When the as-prepared composite PCMs were directly attached to the heating plate or served as thermal interface materials (TIMs) to dissipate heat, the temperature of heating plate can be reduced by 5.8 °C and 18.8 °C, respectively, revealing great potential in the thermal management application of electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Li, F. Wang, W. Cheng, X. Chen, Q. Zhao, Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device. Energy Convers. Manag. 210, 112680 (2020). https://doi.org/10.1016/j.enconman.2020.112680

    Article  CAS  Google Scholar 

  2. L.-Y. Yang, C.-P. Feng, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, W. Yang, Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chem. Eng. J. 425, 131466 (2021). https://doi.org/10.1016/j.cej.2021.131466

    Article  CAS  Google Scholar 

  3. X. Chen, P. Cheng, Z. Tang, X. Xu, H. Gao, G. Wang, Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion. Adv. Sci. (2021). https://doi.org/10.1002/advs.202001274

    Article  Google Scholar 

  4. Y. Tan, Y. Xiao, R. Chen, C. Zhou, L. Wang, Y. Liu, D. Li, High latent heat and recyclable form-stable phase change materials prepared via a facile self-template method. Chem. Eng. J. 396, 125265 (2020). https://doi.org/10.1016/j.cej.2020.125265

    Article  CAS  Google Scholar 

  5. Y. Meng, Y. Zhao, Y. Zhang, B. Tang, Induced dipole force driven PEG/PPEGMA form-stable phase change energy storage materials with high latent heat. Chem. Eng. J. 390, 124618 (2020). https://doi.org/10.1016/j.cej.2020.124618

    Article  CAS  Google Scholar 

  6. B. Akhmetov, M.E. Navarro, A. Seitov, A. Kaltayev, Z. Bakenov, Y. Ding, Numerical study of integrated latent heat thermal energy storage devices using nanoparticle-enhanced phase change materials. Sol. Energy 194, 724–741 (2019). https://doi.org/10.1016/j.solener.2019.10.015

    Article  CAS  Google Scholar 

  7. N. Sun, X. Li, A flexible composite phase change material with ultrahigh stretchability for thermal management in wearable electronics. J. Mater. Sci. 56(28), 15937–15949 (2021). https://doi.org/10.1007/s10853-021-06290-6

    Article  CAS  Google Scholar 

  8. C. Wang, W. Wang, G. Xin, G. Li, J. Zheng, W. Tian, X. Li, Phase change behaviors of PEG on modified graphene oxide mediated by surface functional groups. Eur. Polym. J. 74, 43–50 (2016). https://doi.org/10.1016/j.eurpolymj.2015.10.027

    Article  CAS  Google Scholar 

  9. L. Feng, J. Zheng, H. Yang, Y. Guo, W. Li, X. Li, Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials. Sol. Energy Mater. Sol. Cells 95(2), 644–650 (2011). https://doi.org/10.1016/j.solmat.2010.09.033

    Article  CAS  Google Scholar 

  10. J. Qiu, X. Fan, Y. Shi, S. Zhang, X. Jin, W. Wang, B. Tang, PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J. Mater. Chem. A 7(37), 21371–21377 (2019). https://doi.org/10.1039/c9ta07629h

    Article  CAS  Google Scholar 

  11. C. Ly, J. Lv, L. Ding, Y. Gq, M. Zp, W. Bj, F. Xl, S. Zapotoczny, S. Xf, A shape-stable phase change composite prepared from cellulose nanofiber/polypyrrole/polyethylene glycol for electric-thermal energy conversion and storage. Chem. Eng. J. 400, 125950 (2020). https://doi.org/10.1016/j.cej.2020.125950

    Article  CAS  Google Scholar 

  12. Z. Tao, X. Chen, M. Yang, X. Xu, Y. Sun, Y. Li, J. Wang, G. Wang, Three-dimensional rGO@sponge framework/paraffin wax composite shape-stabilized phase change materials for solar-thermal energy conversion and storage. Sol. Energy Mater. Sol. Cells 215, 110600 (2020). https://doi.org/10.1016/j.solmat.2020.110600

    Article  CAS  Google Scholar 

  13. O.M. Maithya, X. Li, X. Feng, X. Sui, B. Wang, Microencapsulated phase change material via pickering emulsion stabilized by graphene oxide for photothermal conversion. J. Mater. Sci. 55(18), 7731–7742 (2020). https://doi.org/10.1007/s10853-020-04499-5

    Article  CAS  Google Scholar 

  14. J. Singh, J.R. Vennapusa, S. Chattopadhyay, Protein-polysaccharide based microencapsulated phase change material composites for thermal energy storage. Carbohydr. Polym. 229, 115531 (2020). https://doi.org/10.1016/j.carbpol.2019.115531

    Article  CAS  Google Scholar 

  15. M.H. Sipponen, A. Henn, P. Penttilä, M. Österberg, Lignin-fatty acid hybrid nanocapsules for scalable thermal energy storage in phase-change materials. Chem. Eng. J. 393, 124711 (2020). https://doi.org/10.1016/j.cej.2020.124711

    Article  CAS  Google Scholar 

  16. L. Yang, J. Yang, L.-S. Tang, C.-P. Feng, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang, W. Yang, Hierarchically porous PVA aerogel for leakage-proof phase change materials with superior energy storage capacity. Energy Fuels 34(2), 2471–2479 (2020). https://doi.org/10.1021/acs.energyfuels.9b04212

    Article  CAS  Google Scholar 

  17. L. Tang, X. Zhao, C. Feng, L. Bai, J. Yang, R. Bao, Z. Liu, M. Yang, W. Yang, Bacterial cellulose/MXene hybrid aerogels for photodriven shape-stabilized composite phase change materials. Sol. Energy Mater. Sol. Cells 203, 110174 (2019). https://doi.org/10.1016/j.solmat.2019.110174

    Article  CAS  Google Scholar 

  18. J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu, B.H. Xie, M.B. Yang, W. Yang, Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability. Sol. Energy Mater. Sol. Cells 174, 56–64 (2018). https://doi.org/10.1016/j.solmat.2017.08.025

    Article  CAS  Google Scholar 

  19. X. Xu, R. Hu, M. Chen, J. Dong, B. Xiao, Q. Wang, H. Wang, 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach. Chem. Eng. J. 397, 125447 (2020). https://doi.org/10.1016/j.cej.2020.125447

    Article  CAS  Google Scholar 

  20. J. Huang, B. Zhang, M. He, X. Huang, G. Wu, G. Yin, Y. Cui, Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties. J. Mater. Sci. 55(17), 7337–7350 (2020). https://doi.org/10.1007/s10853-020-04514-9

    Article  CAS  Google Scholar 

  21. C.P. Feng, L. Chen, F. Wei, H.Y. Ni, J. Chen, W. Yang, Highly thermally conductive UHMWPE/graphite composites with segregated structures. RSC Adv. 6(70), 65709–65713 (2016). https://doi.org/10.1039/c6ra13921c

    Article  CAS  Google Scholar 

  22. C. Li, B. Xie, D. Chen, J. Chen, W. Li, Z. Chen, S.W. Gibb, Y. Long, Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage. Energy 166, 246–255 (2019). https://doi.org/10.1016/j.energy.2018.10.082

    Article  CAS  Google Scholar 

  23. G.-Q. Qi, J. Yang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, M.-B. Yang, Enhanced comprehensive performance of polyethylene glycol based phase change material with hybrid graphene nanomaterials for thermal energy storage. Carbon 88, 196–205 (2015). https://doi.org/10.1016/j.carbon.2015.03.009

    Article  CAS  Google Scholar 

  24. F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials. Nanoscale 12(6), 4005–4017 (2020). https://doi.org/10.1039/c9nr10696k

    Article  CAS  Google Scholar 

  25. M. Yuan, C. Xu, T. Wang, T. Zhang, X. Pan, F. Ye, Supercooling suppression and crystallization behaviour of erythritol/expanded graphite as form-stable phase change material. Chem. Eng. J. 413, 127394 (2021). https://doi.org/10.1016/j.cej.2020.127394

    Article  CAS  Google Scholar 

  26. D. Luo, L. Xiang, X. Sun, L. Xie, D. Zhou, S. Qin, Phase-change smart lines based on paraffin-expanded graphite/polypropylene hollow fiber membrane composite phase change materials for heat storage. Energy 197, 117252 (2020). https://doi.org/10.1016/j.energy.2020.117252

    Article  CAS  Google Scholar 

  27. S. Wu, T. Li, Z. Tong, J. Chao, T. Zhai, J. Xu, T. Yan, M. Wu, Z. Xu, H. Bao, T. Deng, R. Wang, High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting. Adv. Mater. 31(49), e1905099 (2019). https://doi.org/10.1002/adma.201905099

    Article  CAS  Google Scholar 

  28. P. Liu, F. An, X. Lu, X. Li, P. Min, C. Shu, W. Li, Z.Z. Yu, Highly thermally conductive phase change composites with excellent solar-thermal conversion efficiency and satisfactory shape stability on the basis of high-quality graphene-based aerogels. Compos. Sci. Technol. 201, 108492 (2021). https://doi.org/10.1016/j.compscitech.2020.108492

    Article  CAS  Google Scholar 

  29. B S, Singh LP, Tyagi I, Rawat A, Sinha S, Microencapsulation of a eutectic PCM using in situ polymerization technique for thermal energy storage. Int. J. Energy Res. 44(5), 3854–3864 (2020). https://doi.org/10.1002/er.5182

    Article  CAS  Google Scholar 

  30. O.M. Maithya, X. Zhu, X. Li, S.J. Korir, X. Feng, X. Sui, B. Wang, High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering Emulsion for photothermal conversion. Sol. Energy Mater. Sol. Cells 222, 110924 (2021). https://doi.org/10.1016/j.solmat.2020.110924

    Article  CAS  Google Scholar 

  31. L. Zhou, L.-S. Tang, X.-F. Tao, J. Yang, M.-B. Yang, W. Yang, Facile fabrication of shape-stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol-ene click chemistry and solvent exchange. Chem. Eng. J 396, 125206 (2020). https://doi.org/10.1016/j.cej.2020.125206

    Article  CAS  Google Scholar 

  32. Y. Qian, N. Han, Z. Zhang, R. Cao, L. Tan, W. Li, X. Zhang, Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl. Mater. Interfaces 11(49), 45832–45843 (2019). https://doi.org/10.1021/acsami.9b18543

    Article  CAS  Google Scholar 

  33. S. Song, J. Li, Z. Yang, C. Wang, Enhancement of thermo-physical properties of expanded vermiculite-based organic composite phase change materials for improving the thermal energy storage efficiency. ACS Omega 6(5), 3891–3899 (2021). https://doi.org/10.1021/acsomega.0c05739

    Article  CAS  Google Scholar 

  34. C. Cárdenas-Ramírez, F. Jaramillo, M. Gómez, Systematic review of encapsulation and shape-stabilization of phase change materials. J. Energy Storage 30, 101495 (2020). https://doi.org/10.1016/j.est.2020.101495

    Article  Google Scholar 

  35. D. Xu, R. Yang, Efficient preparation and characterization of paraffin-based microcapsules by emulsion polymerization. J. Appl. Polym. Sci. 136(21), 47552 (2019). https://doi.org/10.1002/app.47552

    Article  CAS  Google Scholar 

  36. A.T. Naikwadi, A.B. Samui, P.A. Mahanwar, Melamine-formaldehyde microencapsulated n-tetracosane phase change material for solar thermal energy storage in coating. Sol. Energy Mater. Sol. Cells 215, 110676 (2020). https://doi.org/10.1016/j.solmat.2020.110676

    Article  CAS  Google Scholar 

  37. Paneliya S, S. Khanna, S.A.P. Utsav, Y.K. Patel, A. Vanpariya, N.H. Makani, R. Banerjee, I. Mukhopadhyay, Core shell paraffin/silica nanocomposite: a promising phase change material for thermal energy storage. Renew. Energy 167, 591–599 (2021). https://doi.org/10.1016/j.renene.2020.11.118

    Article  CAS  Google Scholar 

  38. G. Fang, Z. Chen, H. Li, Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials. Chem. Eng. J. 163(1–2), 154–159 (2010). https://doi.org/10.1016/j.cej.2010.07.054

    Article  CAS  Google Scholar 

  39. T. Wang, S. Wang, R. Luo, C. Zhu, T. Akiyama, Z. Zhang, Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl. Energy 171, 113–119 (2016). https://doi.org/10.1016/j.apenergy.2016.03.037

    Article  CAS  Google Scholar 

  40. B. Mu, M. Li, Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage. Sol. Energy 188, 230–238 (2019). https://doi.org/10.1016/j.solener.2019.05.082

    Article  CAS  Google Scholar 

  41. B. Li, D. Shu, R. Wang, L. Zhai, Y. Chai, Y. Lan, H. Cao, C. Zou, Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage. Renew. Energy 145, 84–92 (2020). https://doi.org/10.1016/j.renene.2019.05.118

    Article  CAS  Google Scholar 

  42. H. Zhang, L. Wang, S. Xi, H. Xie, W. Yu, 3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage. Renew. Energy 175, 307–317 (2021). https://doi.org/10.1016/j.renene.2021.05.019

    Article  CAS  Google Scholar 

  43. B. Wang, G. Li, L. Xu, J. Liao, X. Zhang, Nanoporous boron nitride aerogel film and Its smart composite with phase change Materials. ACS Nano 14, 16590–16599 (2020). https://doi.org/10.1021/acsnano.0c05931

    Article  CAS  Google Scholar 

  44. L. Wan, C. Liu, D. Cao, X. Sun, H. Zhu, High phase change enthalpy enabled by nanocellulose enhanced shape stable boron nitride aerogel. ACS Appl. Polym. Mater. 2(7), 3001–3009 (2020). https://doi.org/10.1021/acsapm.0c00445

    Article  CAS  Google Scholar 

  45. M. Li, J. Liu, S. Pan, J. Zhang, Y. Liu, J. Liu, H. Lu, Highly oriented graphite aerogel fabricated by confined liquid-phase expansion for anisotropically thermally conductive epoxy composites. ACS Appl. Mater. Interfaces 12(24), 27476–27484 (2020). https://doi.org/10.1021/acsami.0c02151

    Article  CAS  Google Scholar 

  46. H. Wu, S. Deng, Y. Shao, J. Yang, X. Qi, Y. Wang, Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization. ACS Appl. Mater. Interfaces 11(50), 46851–46863 (2019). https://doi.org/10.1021/acsami.9b16612

    Article  CAS  Google Scholar 

  47. K. Sun, Y. Kou, H. Dong, S. Ye, D. Zhao, J. Liu, Q. Shi, The design of phase change materials with carbon aerogel composites for multi-responsive thermal energy capture and storage. J. Mater. Chem. A 9(2), 1213–1220 (2021). https://doi.org/10.1039/d0ta09035b

    Article  CAS  Google Scholar 

  48. J. Yang, P. Yu, L.S. Tang, R.Y. Bao, Z.Y. Liu, M.B. Yang, W. Yang, Hierarchically interconnected porous scaffolds for phase change materials with improved thermal conductivity and efficient solar-to-electric energy conversion. Nanoscale 9(45), 17704–17709 (2017). https://doi.org/10.1039/c7nr05449a

    Article  CAS  Google Scholar 

  49. J. Yang, L.-S. Tang, L. Bai, R.-Y. Bao, Z. Liu, B.-H. Xie, M.-B. Yang, W. Yang, Photodriven shape-stabilized phase change materials with optimized thermal conductivity by tailoring the microstructure of hierarchically ordered hybrid porous scaffolds. ACS Sustain. Chem. Eng. 6(5), 6761–6770 (2018). https://doi.org/10.1021/acssuschemeng.8b00565

    Article  CAS  Google Scholar 

  50. X. Huang, X. Chen, A. Li, D. Atinafu, H. Gao, W. Dong, G. Wang, Shape-stabilized phase change materials based on porous supports for thermal energy storage applications. Chem. Eng. J. 356, 641–661 (2019). https://doi.org/10.1016/j.cej.2018.09.013

    Article  CAS  Google Scholar 

  51. J. Yang, L.-S. Tang, L. Bai, R.-Y. Bao, Z.-Y. Liu, B.-H. Xie, M.-B. Yang, W. Yang, High-performance composite phase change materials for energy conversion based on macroscopically three-dimensional structural materials. Mater. Horiz. 6(2), 250–273 (2019). https://doi.org/10.1039/c8mh01219a

    Article  CAS  Google Scholar 

  52. M. Nofal, S. Al-Hallaj, Y. Pan, Thermal management of lithium-ion battery cells using 3D printed phase change composites. Appl. Therm. Eng. 171, 115126 (2020). https://doi.org/10.1016/j.applthermaleng.2020.115126

    Article  CAS  Google Scholar 

  53. M. Kenisarin, K. Mahkamov, F. Kahwash, I. Makhkamova, Enhancing thermal conductivity of paraffin wax 53–57 °C using expanded graphite. Sol. Energy Mater. Sol. Cells 200, 110026 (2019). https://doi.org/10.1016/j.solmat.2019.110026

    Article  CAS  Google Scholar 

  54. Y. Song, N. Zhang, Y. Jing, X. Cao, Y. Yuan, F. Haghighat, Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage. Energy 189, 116175 (2019). https://doi.org/10.1016/j.energy.2019.116175

    Article  CAS  Google Scholar 

  55. H. Abdelrazeq, P. Sobolciak, M. Al-Ali Al-Maadeed, M. Ouederni, I. Krupa, Recycled polyethylene/paraffin wax/expanded graphite based heat absorbers for thermal energy storage: an artificial aging study. Molecules (2019). https://doi.org/10.3390/molecules24071217

    Article  Google Scholar 

  56. C.P. Feng, L.Y. Yang, J. Yang, L. Bai, R.Y. Bao, Z.Y. Liu, M.B. Yang, H.B. Lan, W. Yang, Recent advances in polymer-based thermal interface materials for thermal management: a mini-review. Compos. Commun. 22, 100528 (2020). https://doi.org/10.1016/j.coco.2020.100528

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Special Project of the State Tobacco Monopoly Administration (Grant No. 1102021001021) and the National Natural Science Foundation of China (Grant No. 52003170). The authors thank New Tobacco Products Engineering and Technology Research Center of Sichuan Province. (Grant No. JL/SCZYG SJ001-03)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lu Bai or Yu-Chuan Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, DL., Yang, LY., Wang, SP. et al. Thermally conductive composite phase change materials with excellent thermal management capability for electronic devices. J Mater Sci: Mater Electron 33, 1008–1020 (2022). https://doi.org/10.1007/s10854-021-07371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07371-7

Navigation