Skip to main content

Advertisement

Log in

A flexible composite phase change material with ultrahigh stretchability for thermal management in wearable electronics

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Application of phase change materials (PCMs)-based thermal management technology in flexible electronic devices has been inhibited due to the leakage and strong rigidity of PCMs. A novel flexible composite PCMs with ultrahigh extensibility was developed in this paper. Concretely, a kind of paraffin@copper (PA@Cu) microcapsule with paraffin as core and nano-Cu particle as “flexible” metal shell was prepared by a simple Pickering emulsion method in an aqueous medium. The encapsulation ratio of paraffin reached 98wt%. Then the PA@Cu microcapsules were introduced into uncured liquid silicone to fabricate flexible composite PCMs (PA@Cu/SE). SEM results demonstrated that the microcapsules were tightly and uniformly wrapped in the three-dimensional network structure of silicone elastomer matrix. Owing to the good compatibility of PA@Cu with the polymer elastomer and a barrier for the melted PA provided by the “flexible” nano-Cu shell, the resulting composite PCMs present superior flexibility and thermal reliability. Tensile tests showed that the flexible composites with a relative higher loading of PA@Cu (40wt%) exhibit outstandingly larger extensibility (> 730%) than many reported literatures. In addition, the composites presenting superior thermal protection for biological tissue make them well-suited for thermal management in wearable electronics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Huang YH, Cheng WL, Zhao R (2019) Thermal management of Li-ion battery pack with the application of flexible form-stable composite phase change materials. Energy Conver Manage 182:9–20

    Article  Google Scholar 

  2. Tauseef-ur-Rehman AHM, Janjua MM, Sajjad U, Yan WM (2019) A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. Int J Heat Mass Tran 135:649–673

    Article  CAS  Google Scholar 

  3. Nagar S, Sharma K (2020) Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials. J Mater Sci 56:4941–4966

    Article  CAS  Google Scholar 

  4. Sun Z, Zhao L, Wan H, Liu H, Wu D, Wang X (2020) Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors. Chem Eng J 396:125317

    Article  CAS  Google Scholar 

  5. Nofal M, Al-Hallaj S, Pan Y (2020) Thermal management of lithium-ion battery cells using 3D printed phase change composites. Appl Therm Eng 171:115126

    Article  CAS  Google Scholar 

  6. Umair MM, Zhang Y, Iqbal K, Zhang S, Tang B (2019) Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–a review. Appl Energy 235:846–873

    Article  CAS  Google Scholar 

  7. Zhou L, Tang LS, Tao XF, Yang J, Yang MB, Yang W (2020) Facile fabrication of shape-stabilized polyethylene glycol/cellulose nanocrystal phase change materials based on thiol-ene click chemistry and solvent exchange. Chem Eng J 396:125206

    Article  CAS  Google Scholar 

  8. Yoo Y, Martinez C, Youngblood JP (2017) Synthesis and characterization of microencapsulated phase change materials with poly(urea-urethane):shells containing cellulose nanocrystals. ACS Appl Mater Interfaces 9:31763–31776

    Article  CAS  Google Scholar 

  9. Alva G, Lin Y, Liu L, Fang G (2017) Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review. Energy Buildings 144:276–294

    Article  Google Scholar 

  10. Tang F, Liu L, Alva G, Jia Y, Fang G (2017) Synthesis and properties of microencapsulated octadecane with silica shell as shape–stabilized thermal energy storage materials. Sol Energy Mater Sol Cells 160:1–6

    Article  CAS  Google Scholar 

  11. Huang J, Zhang B, He M, Huang X, Wu G, Yin G, Cui Y (2020) Preparation of anisotropic reduced graphene oxide/BN/paraffin composite phase change materials and investigation of their thermal properties. J Mater Sci 55:7337–7350

    Article  CAS  Google Scholar 

  12. Atinafu DG, Chang SJ, Kim KH, Dong W, Kim S (2020) A novel enhancement of shape/thermal stability and energy-storage capacity of phase change materials through the formation of composites with 3D porous (3,6)-connected metal–organic framework. Chem Eng J 389:124430

    Article  CAS  Google Scholar 

  13. Hu H (2020) Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system. Compos Part B 195:108094

    Article  CAS  Google Scholar 

  14. Ma T, Li L, Wang Q, Guo C (2018) High-performance flame retarded paraffin/epoxy resin form-stable phase change material. J Mater Sci 54:875–885

    Article  CAS  Google Scholar 

  15. Yang Y, Ye X, Luo J, Song G, Liu Y, Tang G (2015) Polymethyl methacrylate based phase change microencapsulation for solar energy storage with silicon nitride. Sol Energy 115:289–296

    Article  CAS  Google Scholar 

  16. Ramakrishnan S, Sanjayan J, Wang X, Alam M, Wilson J (2015) A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites. Appl Energy 157:85–94

    Article  CAS  Google Scholar 

  17. Zhu Y, Chi Y, Liang S, Luo X, Chen K, Tian C, Wang J, Zhang L (2018) Novel metal coated nanoencapsulated phase change materials with high thermal conductivity for thermal energy storage. Sol Energy Mater Sol Cells 176:212–221

    Article  CAS  Google Scholar 

  18. Xu B, Zhou J, Ni Z, Zhang C, Lu C (2018) Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion. Sol Energy Mater Sol Cells 179:87–94

    Article  CAS  Google Scholar 

  19. Yang H, Wang Y, Yu Q, Cao G, Sun X, Yang R, Zhang Q, Liu F, Di X, Li J, Wang C, Li G (2018) Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage. Energy 159:929–936

    Article  CAS  Google Scholar 

  20. Qiu J, Fan X, Shi Y, Zhang S, Jin X, Wang W, Tang B (2019) PEG/3D graphene oxide network form-stable phase change materials with ultrahigh filler content. J Mater Chem A 7:21371–21377

    Article  CAS  Google Scholar 

  21. Yang W, Zhang L, Guo Y, Jiang Z, He F, Xie C, Fan J, Wu J, Zhang K (2017) Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity. J Mater Sci 53:2566–2575

    Article  CAS  Google Scholar 

  22. Feng Z, Li Y, He F, Li Y, Zhou Y, Yang Z, He R, Zhang K, Yang W (2020) Experimental and numerical simulation of phase change process for paraffin in three-dimensional graphene aerogel. Appl Therm Eng 167:114773

    Article  CAS  Google Scholar 

  23. Li G, Hong G, Dong D, Song W, Zhang X (2018) Multiresponsive graphene-aerogel-directed phase-change smart fibers. Adv Mater 30:e1801754

    Article  CAS  Google Scholar 

  24. Wang W, Cai Y, Du M, Hou X, Liu J, Ke H, Wei Q (2019) Ultralight and flexible carbon foam-based phase change composites with high latent-heat capacity and photothermal conversion capability. ACS Appl Mater Interfaces 11:31997–32007

    Article  CAS  Google Scholar 

  25. Chen X, Gao H, Hai G, Jia D, Xing L, Chen S, Cheng P, Han M, Dong W, Wang G (2020) Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy. Energy Storage Mater 26:129–137

    Article  Google Scholar 

  26. Chen R, Huang X, Deng W, Zheng R, Aftab W, Shi J, Xie D, Zou R, Mei Y (2020) Facile preparation of flexible eicosane/SWCNTs phase change films via colloid aggregation for thermal energy storage. Appl Energy 260:114320

    Article  CAS  Google Scholar 

  27. Wu W, Wu W, Wang S (2019) Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl Energy 236:10–21

    Article  CAS  Google Scholar 

  28. Li W, Wang F, Cheng W, Chen X, Zhao Q (2020) Study of using enhanced heat-transfer flexible phase change material film in thermal management of compact electronic device. Energy Conver Manage 210:112680

    Article  CAS  Google Scholar 

  29. Aftab W, Mahmood A, Guo W, Yousaf M, Tabassum H, Huang X, Liang Z, Cao A, Zou R (2019) Polyurethane-based flexible and conductive phase change composites for energy conversion and storage. Energy Storage Mater 20:401–409

    Article  Google Scholar 

  30. Weng M, Chen L, Zhou P, Li J, Huang Z, Zhang W (2016) Low-voltage-driven, flexible and durable paraffin–polydimethylsiloxane-based composite film with switchable transparency. Chem Eng J 295:295–300

    Article  CAS  Google Scholar 

  31. Wu H, Chen R, Shao Y, Qi X, Yang J, Wang Y (2019) Novel flexible phase change materials with mussel-Inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability. ACS Sustain Chem Eng 7:13532–13542

    Article  CAS  Google Scholar 

  32. Feng CP, Chen LB, Tian GL, Wan SS, Bai L, Bao RY, Liu ZY, Yang MB, Yang W (2019) Multifunctional thermal management materials with excellent heat dissipation and generation capability for future electronics. ACS Appl Mater Interfaces 11:18739–18745

    Article  CAS  Google Scholar 

  33. Zeng X, Ye L, Guo K, Sun R, Xu J, Wong CP (2016) Fibrous epoxy substrate with high thermal conductivity and low dielectric property for flexible electronics. Adv Electron Mater 2:1500485

    Article  CAS  Google Scholar 

  34. Li J, Zhao X, Wu W, Zhang Z, Xian Y, Li Yn LuY, Zhang L (2020) Advanced flexible rGO-BN natural rubber films with high thermal conductivity for improved thermal management capability. Carbon 162:46–55

    Article  CAS  Google Scholar 

  35. Shi Y, Wang C, Yin Y, Li Y, Xing Y, Song J (2019) Functional soft composites as thermal protecting substrates for wearable electronics. Adv Funct Mater 29:1905470

    Article  CAS  Google Scholar 

  36. Sun N, Xiao Z (2017) Synthesis and performances of phase change materials microcapsules with a polymer/BN/TiO2 hybrid shell for thermal energy storage. Energy Fuels 31:10186–10195

    Article  CAS  Google Scholar 

  37. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interface Sci 100–102:503–546

    Article  CAS  Google Scholar 

  38. He Y, Wu F, Sun X, Li R, Guo Y, Li C, Zhang L, Xing F, Wang W, Gao J (2013) Factors that affect pickering emulsions stabilized by graphene oxide. ACS Appl Mater Interfaces 5:4843–4855

    Article  CAS  Google Scholar 

  39. Sun N, Xiao Z (2016) Paraffin wax-based phase change microencapsulation embedded with silicon nitride nanoparticles for thermal energy storage. J Mater Sci 51:8550–8561

    Article  CAS  Google Scholar 

  40. Li C, Fu L, Ouyang J, Tang A, Yang H (2015) Kaolinite stabilized paraffin composite phase change materials for thermal energy storage. Appl Clay Sci 115:212–220

    Article  CAS  Google Scholar 

  41. Guo Y, Yang W, Jiang Z, He F, Zhang K, He R, Wu J, Fan J (2019) Silicone rubber/paraffin@silicon dioxide form-stable phase change materials with thermal energy storage and enhanced mechanical property. Sol Energy Mater Sol Cells 196:16–24

    Article  Google Scholar 

  42. Sun N, Xiao Z (2017) Improvement of the thermostability of silicone oil/polystyrene microcapsules by embedding TiO2/Si3N4 nanocomposites as outer shell. J Mater Sci 52:10800–10813

    Article  CAS  Google Scholar 

  43. Rezaie AB, Montazer M (2018) One-step fabrication of fatty acids/nano copper/polyester shape-stable composite phase change material for thermal energy management and storage. Appl Energy 228:1911–1920

    Article  CAS  Google Scholar 

  44. Song J, Chen C, Zhang Y (2018) High thermal conductivity and stretchability of layer-by-layer assembled silicone rubber/graphene nanosheets multilayered films. Compos A 105:1–8

    Article  CAS  Google Scholar 

  45. Németh B, Németh ÁS, Tóth J, Fodor-Kardos A, Gyenis J, Feczkó T (2015) Consolidated microcapsules with double alginate shell containing paraffin for latent heat storage. Sol Energy Mater Sol Cells 143:397–405

    Article  CAS  Google Scholar 

  46. Lyu J, Liu Z, Wu X, Li G, Fang D, Zhang X (2019) Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano 13:2236–2245

    CAS  Google Scholar 

  47. Cheng P, Gao H, Chen X, Chen Y, Han M, Xing L, Liu P, Wang G (2020) Flexible monolithic phase change material based on carbon nanotubes/chitosan/poly(vinyl alcohol). Chem Eng J 397:125330

    Article  CAS  Google Scholar 

  48. Wang Y, Li X, Cheng H, Wang B, Feng X, Zo Ma, Sui X (2020) Facile fabrication of robust and stretchable cellulose nanofibers/polyurethane hybrid aerogels. ACS Sustain Chem Eng 8:8977–8985

    Article  CAS  Google Scholar 

  49. Wu S, Li T, Wu M, Xu J, Hu Y, Chao J, Yan T, Wang R (2020) Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. J Mater Chem A 8:20011–20020

    Article  CAS  Google Scholar 

  50. Qian Y, Han N, Zhang Z, Cao R, Tan L, Li W, Zhang X (2019) Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy. ACS Appl Mater Interfaces 11:45832–45843

    Article  CAS  Google Scholar 

  51. Armstrong DP, Chatterjee K, Ghosh TK, Spontak RJ (2020) Form-stable phase-change elastomer gels derived from thermoplastic elastomer copolyesters swollen with fatty acids. Thermochim Acta 686:178566

    Article  CAS  Google Scholar 

  52. Cai Z, Liu J, Zhou Y, Dai L, Wang H, Liao C, Zou X, Chen Y, Xu Y (2021) Flexible phase change materials with enhanced tensile strength, thermal conductivity and photo-thermal performance. Sol Energy Mater Sol Cells 219:110728

    Article  CAS  Google Scholar 

  53. Li WW, Cheng WL, Xie B, Liu N, Zhang LS (2017) Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage. Energy Convers Manage 149:1–12

    Article  CAS  Google Scholar 

  54. Qi X, Shao Y, Wu H, Yang J, Wang Y (2019) Flexible phase change composite materials with simultaneous light energy storage and light-actuated shape memory capability. Compos Sci Technol 181:107714

    Article  CAS  Google Scholar 

  55. Umair MM, ZhangY ZS, Jin X, Tang B (2019) A novel flexible phase change composite with electro-driven shape memory, energy conversion/storage and motion sensing properties. J Mater Chem A 7:26385–26392

    Article  CAS  Google Scholar 

  56. Shi J, Aftab W, Liang Z, Yuan K, Maqbool M, Jiang H, Xiong F, Qin M, Gao S, Zo Ru (2020) Tuning the flexibility and thermal storage capacity of solid–solid phase change materials towards wearable applications. J Mater Chem A 8:20133–20140

    Article  CAS  Google Scholar 

  57. Chen C, Wang L, Huang Y (2011) Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends. Appl Energy 88:3133–3139

    Article  CAS  Google Scholar 

  58. Shi Y, Hu M, Xing Y, Li Y (2020) Temperature-dependent thermal and mechanical properties of flexible functional PDMS/paraffin composites. Mater Design 185:108219

    Article  CAS  Google Scholar 

  59. He Y, Li W, Han N, Wang J, Zhang X (2019) Facile flexible reversible thermochromic membranes based on micro/nanoencapsulated phase change materials for wearable temperature sensor. Appl Energy 247:615–629

    Article  CAS  Google Scholar 

  60. Bartlett MD, Kazem N, Powell-Palm MJ, Huang X, Sun W, Malen JA, Majidi C (2017) High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA 114:2143–2214

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ21E030002, Hangzhou City Agriculture and Social Development General Project under Grant No. 20201203B118. We thank instrumentation and service center for physical sciences of Westlake University for the facility support and technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling EDitor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3249 kb)

Supplementary file2 (MPG 1207 kb)

Supplementary file3 (MPG 2615 kb)

Supplementary file4 (MPG 1926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, N., Li, X. A flexible composite phase change material with ultrahigh stretchability for thermal management in wearable electronics. J Mater Sci 56, 15937–15949 (2021). https://doi.org/10.1007/s10853-021-06290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06290-6

Navigation