Skip to main content
Log in

Effect of addition of Al and Cu on the properties of Sn–20Bi solder alloy

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study investigates the effect of the composite addition of Al and Cu on the microstructure, physical properties, wettability, and corrosion properties of Sn–20Bi solder alloy. Scanning electron microscopy and X-ray diffraction were used to identify the microstructure morphology and composition. The spreading area and contact angle of the Sn–20Bi–x (x = 0, 0.1 wt% Al, 0.5 wt% Cu, and 0.1 wt% Al–0.5 wt% Cu) alloys on Cu substrates were used to measure the wettability of solder alloys. The results indicate that the alloy with 0.1 wt% Al produces the largest dendrite and the composite addition of 0.1 wt% Al and 0.5 wt% Cu formed Cu6Sn5 and CuAl2 intermetallic compounds in the alloy structure. And the electrical conductivity of Sn–20Bi–0.1Al is the best, which reaches 5.32 MS/m. The spread area of the solder alloy is reduced by the addition of 0.1 wt% Al and 0.5 wt% Cu, which is 80.7 mm2. The corrosion products of Sn–20Bi–x solder alloys are mainly lamellar Sn3O(OH)2Cl2 and the corrosion resistance of 0.1 wt% Al solder alloy alone is the best. The overall corrosion resistance of Sn–20Bi–0.1Al–0.5Cu is weakened and the corrosion of solder alloy is not uniform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Yang, L. Zhang, Z.Q. Liu, S.J. Zhong, J. Ma, L. Bao, Adv. Mater. Sci. Eng. 2016, 1–15 (2016)

    CAS  Google Scholar 

  2. K.D. Min, C.J. Lee, H.J. Park, S.B. Jung, J. Electron. Mater. 49, 1527–1533 (2020)

    Article  CAS  Google Scholar 

  3. A.K. Gain, L. Zhang, J. Mater. Sci.-Mater. Electron. 28, 15718–15730 (2017)

    Article  CAS  Google Scholar 

  4. M.K. Pal, G. Gergely, D. Koncz-Horvath, Z. Gacsi, Intermetallics 128, 9–10 (2021)

    Article  Google Scholar 

  5. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275–283 (2016)

    Article  CAS  Google Scholar 

  6. M. Salleh, S.D. McDonald, C.M. Gourlay, H. Yasuda, K. Nogita, Mater. Des. 108, 418–428 (2016)

    Article  Google Scholar 

  7. Y. Liu, K.N. Tu, Mater. Today Adv. 8, 100115 (2020)

    Article  Google Scholar 

  8. A.K. Gain, L. Zhang, J. Mater. Sci.-Mater. Electron. 27, 781–794 (2016)

    Article  CAS  Google Scholar 

  9. K. Kanlayasiri, T. Ariga, Mater. Des. 86, 371–378 (2015)

    Article  CAS  Google Scholar 

  10. C.M.L. Wu, D.Q. Yu, C.M.T. Law, L. Wang, J. Electron. Mater. 31, 921 (2002)

    Article  CAS  Google Scholar 

  11. S. Zhou, O. Mokhtari, M.G. Rafique, V.C. Shunmugasamy, B. Mansoor, H. Nishikawa, J. Alloy. Compd. 765, 1243–1252 (2018)

    Article  CAS  Google Scholar 

  12. A.A. El-Daly, Y. Swilem, M.H. Makled, M.G. El-Shaarawy, A.M. Abdraboh, J. Alloy. Compd. 484, 134–142 (2009)

    Article  CAS  Google Scholar 

  13. T.H. Chuang, H.J. Lin, J. Electron. Mater. 38, 420–424 (2008)

    Article  Google Scholar 

  14. C.C. Jain, S.S. Wang, H.M. Wu, T.H. Chuang, J. Chin. Inst. Eng. 32, 229–234 (2009)

    Article  CAS  Google Scholar 

  15. X. Wei, H. Huang, L. Zhou, M. Zhang, X. Liu, Mater. Lett. 61, 655–658 (2007)

    Article  CAS  Google Scholar 

  16. L. Anicai, A. Petica, S. Costovici, C. Moise, O. Brincoveanu, T. Visan, Coatings 9, 1–14 (2019)

    Article  Google Scholar 

  17. B.L. Silva, A. Garcia, J.E. Spinelli, J. Alloy. Compd. 691, 600–605 (2017)

    Article  CAS  Google Scholar 

  18. F.W. Zhang, J. Xu, H.J. He, Z.G. Wang, Chin. J. Nonferr. Metals 19, 1782–1788 (2009)

    CAS  Google Scholar 

  19. Q. Guo, Z. Zhao, C. Shen, Microelectron. Reliab. 78, 72–79 (2017)

    Article  CAS  Google Scholar 

  20. L. Shen, P. Septiwerdani, Z. Chen, Mater. Sci. Eng. A 558, 253–258 (2012)

    Article  CAS  Google Scholar 

  21. L. Zhang, L. Sun, Y.H. Guo, J. Mater. Sci.: Mater. Electron. 26, 1–6 (2015)

    Google Scholar 

  22. Z. Lai, D. Ye, J. Mater. Sci.: Mater. Electron. 27, 3182–3192 (2016)

    CAS  Google Scholar 

  23. A.A. El-Daly, A.A. Ibrahiem, J. Alloy. Compd. 740, 801–809 (2018)

    Article  CAS  Google Scholar 

  24. X. Wang, Y. Wang, F. Wang, N. Liu, J. Wang, Acta Metall. Sin.-Engl. Lett. 27, 1159–1164 (2014)

    Article  Google Scholar 

  25. X. Wu, M. Xia, S. Li, X. Wang, B. Liu, J. Zhang, L. Ning, J. Mater. Sci.-Mater. Electron. 28, 15708–15717 (2017)

    Article  CAS  Google Scholar 

  26. W.C. Yang, J.D. Li, Y.T. Li, Materials 12, 1194 (2019)

    Article  CAS  Google Scholar 

  27. J.D. Li, W.C. Yang, Y.T. Li, Y.Z. Zhang, J. Guangxi Univ. (Nat Sci Ed) 43, 1967–1975 (2018)

    Google Scholar 

  28. J. Ren, M. Huang, X. Yang, Effect of Ag element on microstructure and mechanical properties of Sn-Bi-xAg solders designed by cluster-plus-glue-atom model. IEEE (2018). https://doi.org/10.1109/ICEPT.2018.8480522

    Article  Google Scholar 

  29. B.L. Silva, M.G.C. Xavier, A. Garcia, J.E. Spinenlli, Mater. Sci. Eng. A 705, 325–334 (2017)

    Article  CAS  Google Scholar 

  30. D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, J. Electron. Mater. 41, 2073–2082 (2012)

    Article  Google Scholar 

  31. R. Kolenak, R. Augustin, M. Martinkovic, M. Chachula, Solder. Surf. Mount Technol. 25, 175–183 (2013)

    Article  CAS  Google Scholar 

  32. J.F. Li, S.H. Mannan, M.P. Clode, D.C. Whalley, D.A. Hutt, Acta Mater. 54, 2907–2922 (2006)

    Article  CAS  Google Scholar 

  33. J. Shen, Y. Pu, H. Yin, Q. Tang, J. Electron. Mater. 44, 532–541 (2015)

    Article  CAS  Google Scholar 

  34. J. Bang, D.Y. Yu, Y.H. Ko, J.H. Son, H. Nishikawa, C.W. Lee, Microelectron. Reliab. 99, 62–73 (2019)

    Article  CAS  Google Scholar 

  35. L. Zhang, L.L. Gao, J. Alloy. Compd. 635, 55–60 (2015)

    Article  CAS  Google Scholar 

  36. F. Rosalbino, E. Angelini, G. Zanicchi, R. Carlini, R. Marazza, Electrochim. Acta 54, 7231–7235 (2009)

    Article  CAS  Google Scholar 

  37. D.A.A. Shnawah, M.F.M. Sabri, I.A. Badruddin, S.B.M. Said, F.X. Che, J. Mater. Sci.-Mater. Electron. 23, 1988–1997 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research work is supported by the Guangxi Natural Science Foundation (2020GXNSFBA297062, 2018GXNSFDA050008, 2020GXNSFAA159093), the National Natural Science Foundation of China (51761002), the Training Plan of High-Level Talents of Guangxi University (XMPZ160714), and the Scientific Research Projects of the General Administration of Customs (2020HK256).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchao Yang or Yongzhong Zhan.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, and there is no professional or other personal interest of any nature or kind in any product, service, and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, W., Li, J., Zhang, Q. et al. Effect of addition of Al and Cu on the properties of Sn–20Bi solder alloy. J Mater Sci: Mater Electron 33, 177–189 (2022). https://doi.org/10.1007/s10854-021-07283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07283-6

Navigation