Skip to main content

Advertisement

Log in

Preparation and photothermal properties of composite materials of gradient index glass and disordered mesoporous carbon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Luminous energy utilization is a critical factor that directly affects the performance of photothermal conversion materials. However, in the process of photothermal conversion, there is always a thorny problem of low utilization of solar energy due to high reflectivity. In order to solve this problem, in this paper, the gradient refractive index structure has been introduced to reduce the reflection, increase the absorption, and capture more photons, so as to explore the high conversion efficiency, convenient preparation, and large-scale production of photothermal materials. A new type of photothermal composite material, namely gradient index glass and disordered mesoporous carbon, was prepared by screen printing and low-temperature sintering. Compared with the disordered mesoporous carbon glass film without refractive index, the temperature of the material was 9.375 °C higher under 808 nm laser irradiation for 900 s. This new photothermal material with good photothermal properties and stability will have great potential in the field of photothermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.R. Ma, J.H. Yan, Y.C. Huang, C.X. Wang, G.W. Yang, Sci. Adv. 4, 9894 (2018)

    Article  Google Scholar 

  2. B.J. Du, C.B. Ma, G.Y. Ding, H. X, Small 13, 1603275 (2017)

    Article  Google Scholar 

  3. R. Singh, J. Srinivasan, Int. J. Energy Res. 12, 69 (2010)

    Article  Google Scholar 

  4. L.Y. Li, L.M. Fu, X.C. Ai, J.P. Zhang, J. Zhou, Chemistry 23, 18180 (2017)

    Article  CAS  Google Scholar 

  5. Z. Lu, M.J. Li, C.X. Li, Nano Energy 50, 308 (2018)

    Article  Google Scholar 

  6. Y.Q. Chen, K.W. Chen, H. Bai, L. Li, J. Mater. Chem. 22, 17800 (2012)

    Article  CAS  Google Scholar 

  7. L.L. Zhu, M.M. Gao, C.K.N. Peh, G.W. Ho, Mater. Horiz. 5, 323 (2018)

    Article  CAS  Google Scholar 

  8. Y. Chen, L.Z. Wang, J.L. Shi, Nano Today 11, 292 (2016)

    Article  CAS  Google Scholar 

  9. R. Chen, J.J. Wang, H.Z. Qiao, Prog. Chem. 29, 329 (2017)

    CAS  Google Scholar 

  10. Y. Zhang, G.G. Gurzadyan, R.W. Lu, S.F. Zhang, X. Jin, B.T. Tang, Aiche J. 66, e16975 (2020)

    CAS  Google Scholar 

  11. H.J. Chen, L. Shao, T.A. Ming, Z.H.C.M. Zhao, B.C. Yang, J.F. Wang, Small 6, 2272 (2010)

    Article  CAS  Google Scholar 

  12. M.J. Chen, Y.R. He, J.Q. Zhu, Int. J. Heat Mass Trans. 114, 1098 (2017)

    Article  CAS  Google Scholar 

  13. D.H. Zhu, G.W. Huang, L.Y. Zhang, Y. He, H.Q. Xie, W. Yu, Energy Environ. Mater. 2, 22 (2019)

    Article  CAS  Google Scholar 

  14. O.A. Savchuk, J.J. Carvajal, J. Massons, M. Aguilo, F. Diaz, Carbon 103, 134 (2016)

    Article  CAS  Google Scholar 

  15. B. Han, Y.L. Zhang, Q.D. Chen, H.B. Sun, Adv. Funct. Mater. 28, 1802235 (2018)

    Article  Google Scholar 

  16. M.M. Xia, L.H. Chen, C.T. Zhang, Q.M.G. Hasi, Z.H. Li, H.L. Li, Appl. Clay Sci. 189, 105523 (2020)

    Article  CAS  Google Scholar 

  17. L. Sun, Z.L. Li, Z. Li, Y. Hu, C. Chen, C.H. Yang, B.S. Du, Y.F. Besenbacher, M. Yu, Nanoscale 9, 16183 (2017)

    Article  CAS  Google Scholar 

  18. Y.B. Zhang, G.Z. Jia, P. Wang, Q. Zhang, X.Y. Wei, E.M. Dong, J.H. Yao, Superlattices Microstruct. 105, 22 (2017)

    Article  CAS  Google Scholar 

  19. Y.L. Liu, Y.Y. Zhou, Z.J. Zhao, Q.R. Zhang, C.R. Zeng, G.Z. Jia, Results Phys. 16, 103139 (2020)

    Article  Google Scholar 

  20. Y.Y. Cao, J.H. Dou, N.J. Zhao, S.M. Zhang, Y.Q. Zheng, J.P. Zhang, J.Y. Wang, J. Pei, Y.P. Wang, Chem. Mater. 29, 718 (2017)

    Article  CAS  Google Scholar 

  21. X.Q. Xu, Z. Wang, R.T. Li, Y.L. He, Y.P. Wang, Chemistry 24, 9769 (2018)

    Article  CAS  Google Scholar 

  22. L.L. Wang, G.H. Zhu, M. Wang, W. Yu, J. Zeng, X.X. Yu, H.Q. Xie, Q. Li, Sol. Energy 184, 240 (2019)

    Article  CAS  Google Scholar 

  23. Z.G. Wang, K. Yu, S.J. Gong, H.B. Mao, R. Huang, Z.Q. Zhu, ACS Appl. Mater. Interfaces 13, 16246 (2021)

    Article  CAS  Google Scholar 

  24. R. Marin, A. Skripka, L.V. Besteiro, A. Benayas, Z.M. Wang, A.O. Govorov, P. Canton, F. Vetrone, Small 14, 1803282 (2018)

    Article  Google Scholar 

  25. M.Y. Shang, N. Li, S.D. Zhang, T.T. Zhao, C. Zhang, C. Liu, H.F. Li, Z.Y. Wang, ACS Appl. Energy Mater. 1, 56 (2018)

    Article  CAS  Google Scholar 

  26. H.Y. Zhang, K.X. Wang, L.L. Wang, H.Q. Xie, W. Yu, Solar Energy 201, 628 (2020)

    Article  CAS  Google Scholar 

  27. H.J. Jo, B.H. Shim, Microw. Opt. Technol. Lett. 60, 2634 (2018)

    Article  Google Scholar 

  28. H. Li, P. Wang, Y. Zhuo, X. Cao, D.H. Xin, Xiong, J. Am. Ceram. Soc. 103, 5056 (2020)

    Article  CAS  Google Scholar 

  29. M. Kowalczyk, J. Haberko, P. Wasylczyk, Opt. Express 22, 12545 (2014)

    Article  Google Scholar 

  30. P. Kuang, S. Eyderman, M.L. Hsieh, A. Post, S. John, S.Y. Lin, ACS Nano 10, 6116 (2016)

    Article  CAS  Google Scholar 

  31. L. Huang, Q. Jin, X.L. Qu, J. Jin, C.C. Jiang, W.G. Yang, L.J. Wang, W.M. Shi, Superlattices Microstruct. 96, 198 (2016)

    Article  CAS  Google Scholar 

  32. L.Q. Shui, Y.L. Liu, X. Chen, Int. J. Solids Struct. 143, 18 (2018)

    Article  Google Scholar 

  33. W.Z. Ren, Y. Yan, L.Y. Zeng, Z.Z. Shi, A. Gong, P. Schaaf, D. Wang, J.S. Zhao, B.B. Zou, H.S. Yu, G. Chen, E.M.B. Brown, A. Wu, Adv. Healthc. Mater. 4, 1526 (2015)

    Article  CAS  Google Scholar 

  34. D.K. Roper, W. Ahn, J. Phys. Chem. 111, 3636 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jiangsu Natural Science Foundation for Excellent Young Scholar (BK20170101), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (NY220011), and the Opening Project of State Key Laboratory of Green Building Materials (2021GBM10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfu Wang or Xiaohong Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., She, M., Wang, B. et al. Preparation and photothermal properties of composite materials of gradient index glass and disordered mesoporous carbon. J Mater Sci: Mater Electron 32, 27534–27542 (2021). https://doi.org/10.1007/s10854-021-07128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07128-2

Navigation