Skip to main content
Log in

Transparent Lithium-Aluminum-Silicate Glass-Ceramics (Overview)

  • Published:
Glass and Ceramics Aims and scope Submit manuscript

Methods of laser micro- and nano-modification of the structure of transparent dielectrics offer much for the creation of a new type of glass-crystalline materials and new applications. In the present work, after a brief excursion into the history of glass-ceramics, transparent aluminosilicate sitalls [glass-ceramics] are discussed, mainly for the example of the Li2O–Al2O3–SiO2 system, and the areas of their new applications. The recently discovered possibilities of laser micro-modification of the structure of sitalls and the writing of elements of photonics and integrated optics in their interior volume are considered. Special attention is given to transparent glass-ceramics with thermal expansion coefficient close to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. S. D. Stookey, “Catalyzed crystallization of glass in theory and practice,” Ind. Eng. Chem., 51(7), 805 – 808 (1959).

    Article  CAS  Google Scholar 

  2. G. H. Beall, “Dr. S. Donald (Don) Stookey (1915 – 2014): pioneering researcher and adventurer,” Front. in Mater., 3, 37 (2016).

    Article  Google Scholar 

  3. A. M. Smoletovskii, I. I. Kitaigorodskii and His Works in the Field of Chemistry and Chemical Technology of Glass, Ceramics, and Sitalls [in Russian], Basalt Technologies, Perm (2005).

  4. N. M. Pavlushkin, Fundamentals of Sitall Technology: Textbook. Manual for Universities [in Russian], Stroiizdat, Moscow (1979).

  5. W. Holand and G. H. Beall, Glass-Ceramic Technology, John Wiley & Sons, New Jersey (2019).

    Book  Google Scholar 

  6. G. H. Beall, “Design and properties of glass-ceramics,” Annu. Rev. Mater. Sci., 22(1), 91 – 119 (1992).

    Article  CAS  Google Scholar 

  7. E. A Zanotto, “Bbright future for glass-ceramics,” Am. Ceram. Soc. Bull., 89, 19 – 27 (2010).

    CAS  Google Scholar 

  8. V. N. Sigaev, “Structure of oxide glasses and formation of polar glass-ceramics textures,” Fiz. Khim. Stekla, 24(4), 429 – 444 (1998).

    Google Scholar 

  9. V. N. Sigaev, P. Pernice, A. Aronne, et al., “Crystallization of KTiOPO4 phase from potassium titanium phosphate glasses, producing second harmonic generation,” J. Non-Cryst. Solids, 292(1 – 3), 59 – 69 (2001).

    Article  CAS  Google Scholar 

  10. V. N. Sigaev, S. Y. Stefanovich, B. Champagnon, et al. “Amorphous nanostructuring in potassium niobium silicate glasses by SANS and SHG: A new mechanism for second-order optical non-linearity of glasses,” J. Non-Cryst. Solids, 306(3), 238 – 248 (2002).

    Article  CAS  Google Scholar 

  11. H. Bach, D. Krause (eds.), Low Thermal Expansion Glass-Ceramics, Springer, Heidelberg, Berlin (2005), pp. 121 – 235.

    Google Scholar 

  12. X. Liu, J. Zhou, S. Zhou, et al., “Transparent glass-ceramics functionalized by dispersed crystals,” Prog. Mater. Sci., 97, 38 – 96 (2018).

    Article  CAS  Google Scholar 

  13. J. Deubener,M. Allix, M. J. Davis, et al., “Updated definition of glass-ceramics,” J. Non-Cryst. Solids, 501, 3 – 10 (2018).

    Article  CAS  Google Scholar 

  14. R. Müller and S. Reinsch, “Viscous-phase silicate processing,” Ceram. Composites Process. Methods, 3, 75 – 144 (2012).

    Article  Google Scholar 

  15. P. Hartmann, R. Jedamzik, A. Square, et al., “ZERODUR® ceramic glass: Even closer to zero thermal expansion: a Review, Part 1,” JATIS, 7(2), 020901 (2021).

    Google Scholar 

  16. P. Hartmann, R. Jedamzik, A. Square, et al., “ZERODUR® glass-ceramic: Even closer to zero thermal expansion: a Review, Part 2,” JATIS, 7(2), 020902 (2021).

    Google Scholar 

  17. G. J. Gardopee, R. E. Newnham, A. G. Halliyal, et al., “Pyroelectric glass-ceramics,” Appl. Phys. Lett., 36, 817 – 818 (1980).

    Article  CAS  Google Scholar 

  18. V. N. Sigaev, E. V. Lopatina, P. D. Sarkisov, et al., “Grain-oriented surface crystallization of lanthanum borosilicate and lan thanum borogermanate glasses,” MSEB, 48(3), 254 – 260 (1997).

    Article  Google Scholar 

  19. V. N. Sigaev, P. D. Sarkisov, S. Yu. Stefanovich, et al., “Glass-ceramic textures based on new ferroelectric complex oxides,” Ferroelectrics, 233(3 – 4), 165 – 185 (1999).

    Article  CAS  Google Scholar 

  20. T. Komatsu, “Design and control of crystallization in oxide glasses,” J. Non-Cryst. Solids, 428, 156 – 175 (2015).

    Article  CAS  Google Scholar 

  21. T. Honma, K. Maeda, S. Nakane, et al. “Unique properties and potential of glass-ceramics,” J. Ceram. Soc. Japan, 130(8), 545 – 551 (2022).

    Article  CAS  Google Scholar 

  22. Y. Yu, Z. Fang, C. Ma, et al., “Mesoscale engineering of photonic glass for tunable luminescence,” NPG Asia Mater., 8(10), 318 (2016).

    Article  Google Scholar 

  23. V. M. Mashinsky, N. M. Karatun, V. A. Bogatyrev, et al., “Microfluorescence analysis of nanostructuring inhomogeneity in optical fibers with embedded gallium oxide nanocrystals,” Microsc. Microanal., 18(2), 259 – 265 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. A. S. Grabtchikov, I. A. Khodasevich, N. V. Golubev, et al., “Optical amplification in Ni2+-doped gallium germanosilicate glass-ceramics,” Opt. Commun., 491, 126955 (2021).

    Article  CAS  Google Scholar 

  25. Z. Fang, S. Zheng, W. Peng, et al., “Fabrication and characterization of glass-ceramic fiber-containing Cr3+-doped ZnAl2O4 nanocrystals,” J. Am. Ceram., 98(9), 2772 – 2775 (2015).

    Article  CAS  Google Scholar 

  26. N. Karpukhina, R. G. Hill, and R. V. Law, “Crystallization in oxide glasses — a tutorial review,” Chem. Soc. Rev. Fr., 43(7), 2174 – 2186 (2014).

    Article  CAS  Google Scholar 

  27. V. M. Fokin, E. D. Zanotto, N. S. Uritsyn, et al, “Homogeneous crystal nucleation in silicate glasses: a 40-year perspective,” J. Non-Cryst. Solids, 352(26 – 27), 2681 – 2714 (2006).

    Article  CAS  Google Scholar 

  28. F. Suzuki, K. Ogawa, T. Honma, et al. “Laser patterning and preferential orientation of two-dimensional planar β-BaB2O4 crystals on the glass surface,” J. Solid State Chem., 185, 130 – 135 (2012).

    Article  CAS  Google Scholar 

  29. T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express, 18(8), 8019 – 8024 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. V. N. Sigaev, Å. À. Alieva, S. V. Lotarev, et al., “Local crystallization of La2O3–B2O3–GeO2 glass under the action of laser radiation,” Fiz. Khim. Stekla, 35(1), 14 – 23 (2009).

    Google Scholar 

  31. A. S. Lipatiev, T. O. Lipateva, S. V. Lotarev, et al., “Direct laser writing of LaBGeO5 crystal-in-glass waveguide enabling frequency conversion,” Cryst. Growth Des., 17(9), 4670 – 4675 (2017).

    Article  CAS  Google Scholar 

  32. D. Tan, B. Zhang, and J. Qiu, “Ultrafast laser direct writing in glass: thermal accumulation engineering and applications,” Laser Photonics Rev., 15(9), 2000455 (2021).

    Article  CAS  Google Scholar 

  33. T. Komatsu and T. Honma, “Laser patterning and growth mechanism of orientation designed crystals in oxide glasses: A review,” J. Solid State Chem., 275, 210 – 222 (2019).

    Article  CAS  Google Scholar 

  34. S. D. McAnany, K. J. Veenhuizen, A. M. Kiss, et al., “Evolution of glass structure during femtosecond laser assisted crystallization of LaBGeO5 in glass,” J. Non-Cryst. Solids, 551, 120396 (2021).

    Article  CAS  Google Scholar 

  35. A. Lipatiev, S. Fedotov, S. Lotarev, et al., “Direct laser writing of depressed-cladding waveguides in extremely low expansion lithium aluminosilicate glass-ceramics,” Opt. Laser Technol., 138, 106846 (2021).

    Article  CAS  Google Scholar 

  36. J. Guan, “Femtosecond laser-written integrated photonics in bulk glass-ceramics Zerodur,” Ceram., 47(7), 10189 – 10192 (2021).

    CAS  Google Scholar 

  37. P. H. D. Ferreira, D. C. N. Fabris, M. V. Boas, et al. “Transparent glass-ceramic waveguides made by femtosecond laser writing,” Opt. Laser Technol., 136, 106742 (2021).

    Article  CAS  Google Scholar 

  38. V. R. Bhardwaj, E. Simova, P. B. Corkum, et al., “Femtosecond laser-induced refractive index modification in multicomponent glasses,” J. Appl. Phys., 97(8), 083102 (2005).

    Article  Google Scholar 

  39. A. S. Naumov, S. V. Lotarev, A. S. Lipat’ev, et al., Pat. RF 2781465, C1 MPC G02/B 6/10, Method of Laser Writing Integral Waveguides [in Russian], published 10/12/2022.

  40. L. Orlova, A. Chainikova, L. Alekseeva, et al., “Recent advances in radio transparent glass-ceramic materials based on high-temperature aluminosilicate systems,” Rus. J. Inorg. Chem., 60(13), 1692 – 1707 (2015).

    Article  CAS  Google Scholar 

  41. N. Beverini, A. Di Virgilio, J. Belfi, et al., “High-accuracy ring laser gyroscopes: Earth rotation rate and relativistic effects,” J. Phys.: Conf. Ser., 723, 012061 (2016).

  42. A. G. Kuznetsov, A. V. Molchanov,M. V. Chirkin, et al. “Precise laser gyroscope for autonomous inertial navigation,” Quantum Elec., 45, 78 (2015).

    Article  CAS  Google Scholar 

  43. Yu. D. Golyaev, N. R. Zapotyl’ko, A. A. Nedzvetskaya, et al. “Thermally stable optical cavities for Zeeman laser gyroscopes,” Opt. Spectrosc., 113(2), 227 – 229 (2012).

  44. E. Manske, T. Fröhlich, R. Füßl, et al., “Progress of nanopositioning and nanomeasuring machines for cross-scale measurement with sub-nanometer precision,” Meas. Sci. and Technol., 31, 085005 (2020).

    Article  CAS  Google Scholar 

  45. I. Mitra, “ZERODUR: a glass-ceramic material enabling optical technologies,” Opt. Mater. Express, 2, 3563 – 3576 (2022).

    Article  Google Scholar 

  46. T. Liu, C. Li, Q. Huang, et al., “Characterization of the structure and properties of MgO–Al2O3–SiO2–B2O3–Cr2O3 glass-ceramics,” J. Non-Cryst. Solids, 543, 120154 (2020).

    Article  CAS  Google Scholar 

  47. I. Denry and J. A. Holloway, “Ceramics for dental applications: a review,” Mater., 3(1), 351 – 368 (2010).

    Article  CAS  Google Scholar 

  48. T. Kokubo, “Bioactive glass-ceramics: properties and applications,” Biomater., 12(2), 155 – 163 (1991).

    Article  CAS  Google Scholar 

  49. M. Montazerian and E. D. Zanotto, “History and trends of bioactive glass-ceramics,” J. Biomed. Mater. Res. A., 104(5), 1231 – 1249 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. S. B. Sohn, S. Y. Choi, and Y. K. Lee, “Controlled crystallization and characterization of cordierite glass-ceramics for magnetic memory disk substrate,” J. Mater. Sci., 35, 4815 – 4821 (2000).

    Article  CAS  Google Scholar 

  51. T. Benitez, S. Y. Gómez, A. P. N. de Oliveira, et al. “Transparent ceramic and glass-ceramic materials for armor applications,” Ceram. Int., 43, 13031 – 13046 (2017).

    Article  CAS  Google Scholar 

  52. R. Ya. Khodakovskaya, Chemistry of Titanium-Containing Glasses and Glass-Ceramics [in Russian], Khimiya, Moscow (1978).

    Google Scholar 

  53. R. Ya. Khodakovskaya, V. N. Sigaev, N. F. Plutalov, et al., “Phase separation of glasses of the Li2O–Al2O3–SiO2–TiO2 system at the initial stages of sitallization,” Phys. Chem. Glass, 5(2), 134 – 140 (1979).

    CAS  Google Scholar 

  54. G. A. Sycheva, Crystal Nucleation in Lithium Silicate Photosensitive Glasses [in Russian], LAP LAMBERT Academic Publishing, Saarbrücken, Germany (2011).

    Google Scholar 

  55. K. Matusita and M. Tashiro, “Rate of homogeneous nucleation in alkali disilicate glasses,” J. Non-Cryst. Solids, 11(5), 471 – 484 (1973).

    Article  CAS  Google Scholar 

  56. A. A. Loshmanov, V. N. Sigaev, R. Ya. Khodakovskaya, et al., “Small-angle neutron scattering on silica glasses containing titania,” J. Appl. Crystallogr., 7(2), 207 – 210 (1974).

    Article  CAS  Google Scholar 

  57. V. N. Sigaev, A. A. Loshmanov, R. Ya. Khodakovskaya, et al., “Structure of titanosilicate glasses according to neutron diffraction data,” Fiz. Khim. Stekla, 1(5), 403 – 406 (1975).

    CAS  Google Scholar 

  58. E. Kleebusch, C. Patzig, Höche T., et al. “The evidence of phase separation droplets in the crystallization process of a Li2O– Al2O3–SiO2 glass with TiO2 as nucleating agent — An x-ray diffraction and (S) TEM-study supported by EDX-analysis,” Ceram. Int., 44(3), 2919 – 2926 (2018).

  59. E. Kleebusch, C. Thieme, C. Patzig, et al., “Crystallization of lithium aluminosilicate and microstructure of a lithium aluminoborosilicate designed glass for zero thermal expansion,” Ceram. Int., 49(13), 21246 – 21254 (2023).

    Article  CAS  Google Scholar 

  60. E. Kleebusch, C. Patzig, M. Krause, et al., “The titanium coordination state and its temporal evolution in Li2O–Al2O3–SiO2 (LAS) glasses with ZrO2 and TiO2 as nucleation agents — an Xanes investigation,” Ceram. Int., 46(3), 3498 – 3501 (2020).

    Article  CAS  Google Scholar 

  61. E. Kleebusch, C. Patzig, T. Höche, et al., “A modified B2O3 containing Li2O–Al2O3–SiO2 glass with ZrO2 as nucleating agent—crystallization and microstructure studied by XRD and (S) TEM-EDX,” Ceram. Int., 44, 19818 – 19824 (2018).

    Article  CAS  Google Scholar 

  62. E. Kleebusch, C. Patzig, T. Höche, et al., “Effect of the concentrations of nucleating agents ZrO2 and TiO2 on the crystallization of Li2O–Al2O3–SiO2 glass — an x-ray diffraction and TEM investigation,” J. Mater. Sci., 51, 10127 – 10138 (2016).

    Article  CAS  Google Scholar 

  63. E. Kleebusch, C. Rüssel, C. Patzig, et al., “Evidence of epitaxial growth of high-quartz solid solution on ZrTiO4 nuclei in a Li2O–Al2O3–SiO2 glass,” J. Alloys Compd., 748, 73 – 79 (2018).

    Article  CAS  Google Scholar 

  64. V. N. Sigaev, Neutron Diffraction Study of Titanosilicate Glasses, Author’s Abstract of Candidate’s Thesis [in Russian], Institute of Crystallography of the USSR Academy of Sciences, Moscow (1975).

    Google Scholar 

  65. M. Li, C. Xiong, Y. Ma, et al., “Study on crystallization process of Li2O–Al2O3–SiO2 glass-ceramics based on in situ analysis,” Mater., 15(22), 8006 (2022).

    Article  CAS  Google Scholar 

  66. A. Marotta, A. Buri, and F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci., 16, 341 – 344 (1981).

    Article  CAS  Google Scholar 

  67. M. J. Davis and I. Mitra, “Crystallization measurements using DTA methods: applications to Zerodur_,” J. Am. Ceram., 86(9), 1540 – 1546 (2003).

    Article  CAS  Google Scholar 

  68. V. N. Sigaev, V. I. Savinkov, G. Yu. Shakhgildyan, et al. “On the possibility of precision control of the linear thermal expansion coefficient of transparent lithium-aluminum-silicate sitalls near zero values,” Glass Ceram., 76(11), 446 – 450 (2020).

    Article  CAS  Google Scholar 

  69. A. S. Naumov, R. O. Alekseev, V. I. Savinkov, and V. N. Sigaev, “Nucleation and crystals growth in the interior volume of glass of the system Li2O–Al2O3–SiO2,” Glass Ceram., 80 (In press) (2023).

  70. G. H. Beall and L. R. Pinckney, “Nanophase glass-ceramics,” J. Am. Ceram., 82(1), 5 – 16 (1999).

    Article  CAS  Google Scholar 

  71. Y. Wang, Y. Zhang, L. Dong, et al., “Application and development of ultra-low expansion glass-ceramic in aerospace,” in: AOPC 2017: Space Optics and Earth Imaging and Space Navigation. SPIE, 10463, 87 – 92 (2017).

  72. V. N. Sigaev, V. I. Savinkov, E. E. Stroganova, etc. Pat. RF 2 569 703, C1 IPC C03C 10/12. Method for Producing Optical Glass-Ceramics [in Russian], publ. 11/27/2015.

  73. R. A. Hatch, “Phase equilibrium in the system: Li2O∙Al2O3–SiO2,” Am. Min., 28(9 – 10), 471 – 496 (1943).

    CAS  Google Scholar 

  74. B. Konar, D. G. Kim, and I. H. Jung, “Critical thermodynamic optimization of the Li2O–Al2O3–SiO2 system and its application for the thermodynamic analysis of glass-ceramics,” J. Eur. Ceram., 38(11), 3881 – 3904 (2018).

    Article  CAS  Google Scholar 

  75. R. Roy, D. M. Roy, and E. F. Osborn, “Compositional and stability relationships among the lithium aluminosilicates: eucryptite, spodumene, and petalite,” J. Am. Ceram., 33(5), 152 – 159 (1950).

    Article  CAS  Google Scholar 

  76. H. Schulz, “Thermal expansion of beta eucryptite,” J. Am. Ceram., 57(7), 313 – 318 (1974).

    Article  CAS  Google Scholar 

  77. F. H. Gillery and E. A. Bush, “Thermal contraction of β-eucryptite (Li2O∙Al2O3∙2SiO2-) by x-ray and dilatometer methods,” J. Am. Ceram., 42(4), 175 – 177 (1959).

    Article  CAS  Google Scholar 

  78. A. I. Lichtenstein, R. O. Jones, H. Xu, et al. “Anisotropic thermal expansion in the silicate β-eucryptite: Aneutron diffraction and density functional study,” Phys. Rev. B, 58(10), 6219 (1998).

    Article  CAS  Google Scholar 

  79. J. Petzoldt and W. Pannhorst, “Chemistry and structure of glass-ceramic materials for high precision optical applications” J. Non-Cryst. Solids, 129(1 – 3), 191 – 198 (1991).

    Article  CAS  Google Scholar 

  80. L. Zhu, M. Wang, Y. Xu, et al. “Dual effect of ZrO2 on phase separation and crystallization in Li2O–Al2O3–SiO2–P2O5 glasses,” J. Am. Ceram., 105(9), 5698 – 5710 (2022).

    Article  CAS  Google Scholar 

  81. J. Wu, C. Lin, J. Liu, et al. “The effect of complex nucleating agent on the crystallization, phase formation and performance in lithium aluminum silicate (LAS) glasses,” J. Non-Cryst. Solids, 521, 119486 (2019).

    Article  CAS  Google Scholar 

  82. V. Maier and G. Müller, “Mechanism of oxide nucleation in lithium aluminosilicate glass-ceramics,” J. Am. Ceram., 70(8), 176 – 178 (1987).

    Article  Google Scholar 

  83. C. Venkateswaran, S. C. Sharma, B. Pant, et al., “Crystallization studies on site saturated lithium aluminosilicate (LAS) glass,” Thermochim. Acta, 679, 178311 (2019).

    Article  CAS  Google Scholar 

  84. A. Kumar, A. Chakrabarti, M. S. Shekhawat, et al., “Transparent ultra-low expansion lithium aluminosilicate glass-ceramics: crystallization kinetics, structural and optical properties,” Thermochim. Acta, 676, 155 – 163 (2019).

    Article  CAS  Google Scholar 

  85. F. C. Figueira and A. M. Bernardin, “Sinter-crystallization of spodumene LAS glass-ceramic tiles processed by single-firing,” J. Alloys Compd., 800, 525 – 531 (2019).

    Article  CAS  Google Scholar 

  86. R. Zhang, L. Yi, F. Kong, et al. “Rapid preparation of low thermal expansion transparent LAS nanocrystalline glass by one-step thermoelectric treatment,” Ceram. Int., 47, 34380 – 34387 (2021).

    Article  CAS  Google Scholar 

  87. G. Qian, T. Zhang, L. J. Zhang, et al., “Demonstrations of centimeter-scale polymer resonator for resonant integrated optical gyroscope,” Sens. and Actuators A. Phys., 237, 29 – 34 (2016).

    Article  CAS  Google Scholar 

  88. M. De Carlo, F. De Leonardis, and V. M. N. Passaro, “Design rules of a microscale PT-symmetric optical gyroscope using group IV platform,” J. Light. Technol., 36(16), 3261 – 3268 (2018).

    Article  Google Scholar 

  89. A. R. Molla, A. M. Rodrigues, S. P. Singh, et al., “Crystallization, mechanical, and optical properties of transparent, nanocrystalline gahnite glass-ceramics,” J. Am. Ceram., 100(5), 1963 – 1975 (2017).

    Article  CAS  Google Scholar 

  90. A. L. Mitchell, D. E. Perea, M. G. Wirth, et al., “Nanoscale microstructure and chemistry of transparent gahnite glass-ceramics revealed by atom probe tomography,” Scr. Mater., 203, 114110 (2021).

    Article  CAS  Google Scholar 

  91. G. Yu. Shakhgildyan, R. O. Alekseev, A. S. Naumov, et al., ”Investigation of the structure and influence of ion exchange on the microhardness of low-alkali transparent ganite glass-ceramics,” Glass Ceram., 80(3 – 4), 94 – 99 (2023).

    Article  CAS  Google Scholar 

  92. G. Yu. Shakhgildyan, V. I. Savinkov, A. Yu. Shakhgildyan, et al. “Effect of sitallization conditions on the hardness of transparent sitalls in the system ZnO–MgO–Al2O3–SiO2,” Glass Ceram., 77, 426 – 428 (2021).

    Article  CAS  Google Scholar 

  93. G. Y. Shakhgildyan, R. O. Alekseev, N. V. Golubev, et al., “One-step crystallization of gahnite glass-ceramics in a wide thermal gradient,” Chem. Eng., 7(2), 37 (2023).

    CAS  Google Scholar 

  94. B. Yuan, et al., CN Pat. 112919810. Int C1. C03C 10/04. Glass-Ceramic, Glass-Ceramic Product and Manufacturing Method of Glass-Ceramic Product, Date of Patent: 08/06/2021.

  95. J. Lapointe, M. Gagné, M. J. Li, et al., “Making smart phones smarter with photonics,” Opt. Express, 22(13), 15473 – 15483 (2014).

    Article  PubMed  Google Scholar 

  96. J. Lapointe, F. Parent, E. S. de Lima Filho, et al., “Toward the integration of optical sensors in smart-phone screens using femtosecond laser writing,” Opt. Lett., 40(23), pp. 5654 – 5657 (2015).

  97. J. Han, J. Liu, X. Yao, et al., “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express, 23(3), 3534 – 3549 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. A. S. Naumov, S. V. Lotarev, A. S. Lipatyev, et al., “Laser amorphization of a crystalline phase in the bulk of a thermally stable lithium aluminosilicate glass-ceramic,” Inorg. Mater., 59(4), 419 – 424 (2023).

    Article  Google Scholar 

  99. V. N. Sigaev, A. S. Naumov, A. S. Lipatiev, et al. “Phase transformations under the action of femtosecond pulses in ZnO–MgO–Al2O3–SiO2 sitalls,” Glass Ceram., 80(1 – 2), 1 – 6 (2023).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Sigaev.

Additional information

Translated from Steklo i Keramika, No. 11, pp. 54 – 63, November, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumov, A.S., Sigaev, V.N. Transparent Lithium-Aluminum-Silicate Glass-Ceramics (Overview). Glass Ceram 80, 491–499 (2024). https://doi.org/10.1007/s10717-024-00639-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-024-00639-4

Keywords

Navigation