Skip to main content
Log in

Optical properties of multilayer graphene nanoplatelet (mGNP)/poly(methyl methacrylate) (PMMA) composite flexible thin films prepared by solvent casting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multi-layer graphene nanoplatelet (mGNP)/poly(methyl methacrylate) (PMMA) nanocomposite flexible thin films were prepared at various GNP loadings (1–5 wt%) and their optical properties were investigated in the UV, visible, and near IR region (200–850 nm). The transmittance and reflectance of the films reduced with an increase in the GNP loading. Although it is known that the transmittance of pure graphene is independent of wavelength, it was observed that in the UV region, the optical properties of mGNP/PMMA are wavelength-dependent. However, at higher GNP loadings (3–5%), these films have shown optical properties with less wavelength dependency. This may be attributed to diverse types of attenuation mechanisms in the nanocomposite films when graphene is incorporated as filler in the polymer matrix. In the visible region (400–700 nm), no such wavelength-dependent optical properties were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data will be available on request.

Code availability

Not Applicable.

References

  1. P. Peumans, A. Yakimov, S.R. Forrest, Journal of Applied Physics, 93 (2003) https://doi.org/10.1063/1.1534621.

  2. Jung-Yong Lee, S.T. Connor, Y. Cui, P. Peumans, Nano Lett, 8 (2008) https://doi.org/10.1021/nl073296g

  3. A. Patra, Y. H. Wijsboom, S. S. Zade, M. Li, Y. Sheynin, G. Leitus, M. Bendikov, J. Am. Chem. Soc. 130 (2008) https://doi.org/10.1021/ar4002284

  4. J. Meiss, M. K. Riede, K. Leo, Appl. Phys. Lett. 94 (2009) https://doi.org/10.1063/1.3059552

  5. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M. E. Tompson, C. Zhou, Nano Lett, 6 (2006) https://doi.org/10.1021/nl0608543

  6. D. Ginley, T. Coutts, J. Perkins, D. Young, X. Li, P. Parilla, Mater. Res. Soc. Symp. Proc. 6, 668 (2001)

    Google Scholar 

  7. A.K. Gupta, M. Bafna, Y.K. Vijay, Mater. Sci. 41, 160 (2018). https://doi.org/10.1007/s12034-018-1654-7

    Article  CAS  Google Scholar 

  8. S. Kim, S. Choi, C. Park, H. Jin, Thin Solid Films 347, 155–160 (1999)

    Article  CAS  Google Scholar 

  9. M. Grundmann, Springer, Berlin. Heidelberg (2010). https://doi.org/10.1007/978-3-642-13884-3_19

    Article  Google Scholar 

  10. Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Adv. Mater. 23, 4453–4457 (2011)

    Article  CAS  Google Scholar 

  11. X. Guo, X. Liu, J. Luo, Z. Gan, Z. Meng, N. Zhang, RSC Adv. 5, 24953–24959 (2015)

    Article  CAS  Google Scholar 

  12. R.V. Salvatierra, C.E. Cava, L.S. Roman, A.J.G. Zarbin, Adv. Funct. Mater. 23, 1490–1499 (2013)

    Article  CAS  Google Scholar 

  13. J. Du, S. Pei, L. Ma, H.M. Cheng, Adv. Mater. (2014). https://doi.org/10.1002/adma.201304135

    Article  Google Scholar 

  14. M.X. Jing, C. Han, M. Li, X.Q. Shen, Nanoscale Res. Lett. (2014). https://doi.org/10.1186/1556-276X-9-588

    Article  Google Scholar 

  15. M.W. Rowell, M.A. Topinka, M.D. McGehee, H.-J. Prall, G. Dennler, N.S. Sariciftci, L. Hu, G. Gruner, Appl. Phys. Lett. 10(1063/1), 2209887 (2006)

    Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  17. P. Blake, P.D. Brimicombe, R.R. Nair, R.R.T.J. Booth, D. Jiang, F. Schedin, L.A. Ponomarenko, S.V. Morozov, H.F. Gleeson, E.W. Hill, A.K. Geim, K.S. Novoselov, Nano Lett. (2008). https://doi.org/10.1021/nl080649i

    Article  Google Scholar 

  18. P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, A. K. Geim, Appl. Phys. Lett., 91 (2007) https://doi.org/10.1063/1.2768624

  19. M. He, J. Jung, F. Qiu, Z. Lin, J. Mater. Chem. (2012). https://doi.org/10.1039/C2JM33784C

    Article  Google Scholar 

  20. D. Wei, J. Kivioja, Nanoscale (2013). https://doi.org/10.1039/C3NR03312K

    Article  Google Scholar 

  21. R.M. Obodo, I. Ahmad, F.I. Ezema, Introductory chapter: graphene and its applications, Graphene and Its Derivatives-Synthesis and Applications,

  22. J. K. Wassei, R. B. Kaner, Materials Today 13 (2010) https://doi.org/10.1016/S1369-7021(10)70034-1

  23. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano (2010). https://doi.org/10.1021/nn1000035

    Article  Google Scholar 

  24. V.C. Tung, L.M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, Y. Yang, Nano Lett (2009). https://doi.org/10.1021/nl9001525

    Article  Google Scholar 

  25. C.I. Idumah, A. Hassan, Rev. Chem. Eng. (2016). https://doi.org/10.1515/revce-2015-0038

    Article  Google Scholar 

  26. S.C. Tjong, Expr. Polym. Lett. (2012). https://doi.org/10.3144/expresspolymlett.2012.46

    Article  Google Scholar 

  27. N. Saravanan, R. Rajasekar, S. Mahalakshmi, T.P. Sathishkumar, K.S.K. Sasikumar, S. Sahoo, J. Reinf. Plast. Compos. (2014). https://doi.org/10.1177/0731684414524847

    Article  Google Scholar 

  28. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature (2009). https://doi.org/10.1038/nature07719

    Article  Google Scholar 

  29. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science (2009). https://doi.org/10.1126/science.1171245

    Article  Google Scholar 

  30. X. Wang, L. Zhi, K. Müllen, Nano Lett. (2008). https://doi.org/10.1021/nl072838r

    Article  Google Scholar 

  31. Q. Bao, H. Zhang, J.X. Yang, S. Wang, D. Tang, R. Jose, S. Ramakrishna, C.T. Lim, K. Loh, Adv. Funct. Mater. (2010). https://doi.org/10.1002/adfm.200901658

    Article  Google Scholar 

  32. K. S. Choi, Y. Park, K-.C. Kwon, J. Kim, C. K. Kim, S. T. Chang, and S. Y. Kim, J. Electrochem. Soc. (2011) https://doi.org/10.1149/1.3593044

  33. K. Zeranska-Chudek, A. Lapinska, A. Wroblewska, J. Judek, A. Duzynska, M. Pawlowski, A.M. Witowski, M. Zdrojek, Nat. Sci. Rep. (2018). https://doi.org/10.1038/s41598-018-27317-0

    Article  Google Scholar 

  34. A.G. Ricciardulli, S. Yang, X. Feng, P.W.M. Blom, A.C.S. Appl, Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b09702

    Article  Google Scholar 

  35. M. Katsnelson, Cambridge University Press 2012, ISBN: 9781139031080 https://doi.org/10.1017/CBO9781139031080

  36. T. Stauber, N.M.R. Peres, A.K. Geim, Phys. Rev. B (2008). https://doi.org/10.1103/PhysRevB.78.085432

    Article  Google Scholar 

  37. F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Nat. Photonics 4, 611–622 (2010)

    Article  CAS  Google Scholar 

  38. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2018)

    Article  CAS  Google Scholar 

  39. M.A. Aldosari, A.A. Othman, E.H. Alsharaeh, Molecules 18, 3152–3167 (2013)

    Article  CAS  Google Scholar 

  40. S. Zhu, S. Yuan, G.C.A.M. Janssen, Express Polym Lett 108, 17007 (2014). https://doi.org/10.1209/0295-5075/108/17007

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work. This work is part of my PhD work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [Makireddi Sai]. Experimental support provided by [Debadatta Sethy, Sanal Francis, Yogendra Kumar M S]. The first draft of the manuscript was written by [Makiredd Sai] and all authors commented on previous versions of the manuscript. Conceptualization, review, and editing were done by [Francis V Varghese and Krishnan Balasubramaniam]. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Makireddi Sai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

All others agree to submit this article to Journal of Materials Science: Materials in Electronics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sai, M., Sethy, D., Francis, S. et al. Optical properties of multilayer graphene nanoplatelet (mGNP)/poly(methyl methacrylate) (PMMA) composite flexible thin films prepared by solvent casting. J Mater Sci: Mater Electron 32, 26750–26757 (2021). https://doi.org/10.1007/s10854-021-07052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07052-5

Navigation