Skip to main content
Log in

Exploring the Optical and Electrical Properties of 70%PVP/30%PVA Blend Polymer Doping with Graphene Thin Films For Optoelectronics Applications

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this current study, a set of five polymer-based graphene (PBG) thin films were prepared using polymer-in-polymer composite (70%PVP/30%PVA) doping with different concentrations of graphene (G) nanopowder, where a traditional preparation method was followed. The structures of the proposed graphene-doped PVA/PVP (PBG) polymeric composite films were characterized using XRD and FT-IR measurements, and the optical parameters were obtained using UV–Vis spectral analysis. The XRD patterns confirmed the amorphous phases of the synthesized PBG films with the existence of a semi-crystalline peak. The crystallinity degree was found to decrease when the graphene content was increased. The FT-IR spectra showed the characteristic features of both PVP and PVA polymers. The increase in the graphene content impacted the intensities of the vibrations of OH and C=O functional groups. When the graphene content was increased, the optical absorbance of the PVA/PVP composite increased with a decrease in the values of the direct and indirect optical energy bandgaps of the proposed polymeric films. Furthermore, the optical limiting (OL) effects decreased when increasing the weight concentration of graphene nanoparticles in the host blend polymer. The OL findings suggested that G-rich films could be used to protect optical sensors and human eyes from intense laser beams. The AC conductivities of the graphene-doped PVA/PVP polymeric composites increased linearly when the frequency of the applied field increased. The measured AC electrical conductivity was fitted using many theoretical approaches, where the correlated barrier hopping CBH model gives the best fit. Accordingly, the conduction mechanism has been assigned to the correlated hopping over the potential barriers. The as-synthesized graphene-doped PVA/PVP polymeric composite films with remarkable optical and electrical properties would be outstanding candidates for optoelectronic, laser limiter, optical filter, and biomedical laser applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All original measurements and data analysis of this work will be available when required.

References

  1. K.M. Abu Hurayra-Lizu, M.W. Bari, F. Gulshan, and M.R. Islam, GO based PVA nanocomposites: tailoring of optical and structural properties of PVA with a low percentage of GO nanofillers. Heliyon 7, e06983 (2021). https://doi.org/10.1016/j.heliyon.2021.e06983.

    Article  CAS  Google Scholar 

  2. A. Qasem, A.A. Hassan, F.Y. Rajhi, H.A.S. Abbas, and E.R. Shaaban, Effective role of cadmium doping in controlling the linear and non-linear optical properties of non-crystalline Cd-Se-S thin films. Mater. Sci. Mater. Electron. 33, 1953 (2022).

    Article  CAS  Google Scholar 

  3. H.E. Ali and Y. Khairy, Optical and electrical performance of copper chloride doped polyvinyl alcohol for optical limiter and polymeric varistor devices. Phys. B 572, 256 (2019). https://doi.org/10.1016/j.physb.2019.08.014.

    Article  CAS  Google Scholar 

  4. D. Sahoo, P. Priyadarshini, R. Dandela, D. Alagarasan, R. Ganesan, S. Varadharajaperumal, and R. Naik, Investigation of amorphous-crystalline transformation induced optical and electronic properties change in annealed As50Se50 thin films. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02851-w.

    Article  Google Scholar 

  5. I. Sharma, S.K. Tripathi, and P.B. Barman, Thickness-dependent optical properties and nonlinear refractive index of a-Ge-Se-In thin films. Phase Trans. 87, 363 (2014). https://doi.org/10.1080/01411594.2013.820828.

    Article  CAS  Google Scholar 

  6. H. Elhosiny Ali, Y. Khairy, H. Algarni, H.I. Elsaeedy, A.M. Alshehri, and I.S. Yahia, Optical spectroscopy and electrical analysis of La3+-doped PVA composite films for varistor and optoelectronic applications. Mater. Sci. Mater. Electron. 29, 20424 (2018). https://doi.org/10.1007/s10854-018-0176-9.

    Article  CAS  Google Scholar 

  7. F.M. Ali, Synthesis and characterization of a Novel Erbium Doped Poly(vinyl alcohol) Films for Multifunctional Optical Materials. Inorg. Organometal. Polym. Mater. 30, 2418 (2020). https://doi.org/10.1007/s10904-019-01386-8.

    Article  CAS  Google Scholar 

  8. K. Anshu and A. Sharma, Study of Se based quaternary Se-Pb-(Bi, Te) chalcogenide thin films for their linear and nonlinear optical properties. Optik 127, 48 (2016). https://doi.org/10.1016/j.ijleo.2015.09.228.

    Article  CAS  Google Scholar 

  9. R. Siburian, K. Sebayang, M. Supeno, and H. Marpaung, Effect of N-doped graphene for properties of Pt/N-doped graphene catalyst. ChemistrySelect 2, 1188 (2017). https://doi.org/10.1002/slct.201601561.

    Article  CAS  Google Scholar 

  10. T. Zhang, G.Y. Zhu, C.H. Yu, Y. Xie, M.Y. Xia, B.Y. Lu, X. Fei, and Q. Peng, The UV absorption of graphene oxide is size-dependent: possible calibration pitfalls. Microchim. Acta (2019). https://doi.org/10.1007/s00604-019-3329-5.

    Article  Google Scholar 

  11. P. Yadav and A. Sharma, Investigation of optical nonlinearities in Bi-doped Se-Te chalcogenide thin films. J. Electron. Mater. 44, 916 (2015). https://doi.org/10.1007/s11664-014-3577-4.

    Article  CAS  Google Scholar 

  12. E.M. Abdelrazek, I.S. Elashmawi, A. El-khodary, and A. Yassin, Structural, optical, thermal and electrical studies on PVA/PVP blends filled with lithium bromide. Curr. Appl. Phys. 10, 607 (2010). https://doi.org/10.1016/j.cap.2009.08.005.

    Article  Google Scholar 

  13. K.A. Hurayra-Lizu, M.W. Bari, F. Gulshan, and M.R. Islam, GO-based PVA nanocomposites: tailoring of optical and structural properties of PVA with a low percentage of GO nanofillers. Heliyon 7, e06983 (2021).

    Article  Google Scholar 

  14. R. Siburian, H. Sihotang, S. Lumban Raja, M. Supeno, and C. Simanjuntak, New route to synthesize of graphene nanosheets. Oriental J. Chem. 34, 182 (2018).

    Article  CAS  Google Scholar 

  15. S.H. Cho, Z.T. Park, J.G. Kim, and J.H. Boo, Physical and optical properties of plasma polymerized thin films deposited by the PECVD method. Surf. Coat. Technol. 174–175, 1111 (2003). https://doi.org/10.1016/S0257-8972(03)00596-6.

    Article  CAS  Google Scholar 

  16. T. Hanemann, Tuning the polymer refractive index with nanosized organic dopants. SPIE Newsroom (2008). https://doi.org/10.1117/2.1200810.1300.

    Article  Google Scholar 

  17. M.J. Tommalieh, N.S. Awwad, H.A. Ibrahium, and A.A. Menazea, Characterization and electrical enhancement of PVP/PVA matrix doped by gold nanoparticles prepared by laser ablation. Radiat Phys Chem. 179, 109195 (2021).

    Article  CAS  Google Scholar 

  18. R.M. Ahmeda, A.A. Ibrahiem, and E.A. El-Saida, Effect of cobalt chloride as filler and PVP on the optical properties of PVA/PEG/PVP blends. Opt. Spectrosc. 128, 642 (2020).

    Article  Google Scholar 

  19. Z.A. Alrowailia, M. Ezzeldien, M.I. Mohammed, and I.S. Yahia, Design of low-cost laser CUT-OFF filters using carmine dye-doped PVA polymeric composite films. Results Phys. 18, 103203 (2020).

    Article  Google Scholar 

  20. H.M. Zidan, E.M. Abdelrazek, A.M. Abdelghany, and A.E. Tarabiah, Characterization and some physical studies of PVA/PVP filled with MWCNTs. J. Mater. Res. Technol. 8, 904 (2019).

    Article  CAS  Google Scholar 

  21. M. Sai, D. Sethy, S. Francis, M.S.Y. Kumar, F.V. Varghese, and K. Balasubramaniam, Optical properties of multilayer graphene nanoplatelet (mGNP)/poly(methyl methacrylate) (PMMA) composite flexible thin films prepared by solvent casting. J. Mater. Sci. Mater. Electron. 32, 26750 (2021). https://doi.org/10.1007/s10854-021-07052-5.

    Article  CAS  Google Scholar 

  22. H.M. Gomaa, B.M.A. Makram, H.A. Saudi, I.S. Yahia, and S.M. Elkatlawy, Effect of Ag2O addition on structural and optical characteristics of B2O3-Bi2O3-Na2O-Nb2O5 oxide glass. Optik 247, 167857 (2021). https://doi.org/10.1016/j.ijleo.2021.167857.

    Article  CAS  Google Scholar 

  23. S.M. Elkatlawy, A.H. El-Dosokey, and H.M. Gomaa, Structural properties, linear, and non-linear optical parameters of ternary Se80Te(20–x)Inx chalcogenide glass systems. Bol. Soc. Esp. Ceram. Vidrio (2020). https://doi.org/10.1016/j.bsecv.2020.09.007.

    Article  Google Scholar 

  24. M.Y. Hassaan, H.A. Saudi, H.M. Gomaa, and A.S. Morsy, Optical properties of bismuth borate glasses doped with zinc and calcium oxides. J. Mater. Appl. 9, 46 (2020).

    Article  Google Scholar 

  25. N.M. Ebrahem, H.M. Gomaa, H.A. Saudi, R.M.E. Shazly, W.M. El-Meligy, and F.M. El-Hossary, Influence of La-impurities and plasma treatment on the structural and optical properties of some bismuth calcium borate glasses. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-03318-8.

    Article  Google Scholar 

  26. H.M. Gomaa, I.S. Yahia, B.M.A. Makram, A.H. El-Dosokey, and S.M. Elkatlawy, Optical and structural studies of some zinc calcium borate glasses for optoelectronic device applications. J. Mater. Sci.: Mater. Electron. 32, 9392 (2021). https://doi.org/10.1007/s10854-021-05602-5.

    Article  CAS  Google Scholar 

  27. H.M. Gomaa, I.S. Yahia, H.Y. Zahren, H.A. Saudi, and A.H. El-Dosokey, Effect of replacement of SiO2 with BaTiO3 on the cadmium calcium-borate glass: aiming to obtain an active glass for optical and shielding applications. Radiat. Phys. Chem. 193, 109955 (2022). https://doi.org/10.1016/j.radphyschem.2021.109955.

    Article  CAS  Google Scholar 

  28. T.H. AlAbdulaal, H.E. Ali, V. Ganesh, A.M. Aboraia, Y. Khairy, H.H. Hegazy, and I.S. Yahia, Investigating the structural morphology, linear/nonlinear optical characteristics of Nd2O3 doped PVA polymeric composite films: Kramers–Kroning approach. Phys. Scripta 96, 125831 (2021).

    Article  Google Scholar 

  29. Z.A. Alrowaili, M. Ezzeldien, M.I. Mohammed, and I.S. Yahia, Design of a low-cost laser CUT-OFF filters using carmine dye-doped PVA polymeric composite films. Results Phys. 18, 103203 (2020).

    Article  Google Scholar 

  30. A.F. Qasrawi and O.A. Omareya, Formation and characterization of Cd2S3 polycrystalline films onto glass and lanthanum substrates. J. Electron. Mater. 48, 2350 (2019). https://doi.org/10.1007/s11664-018-06905-w.

    Article  CAS  Google Scholar 

  31. T. Arumanayagam and P. Murugakoothan, Optical conductivity and dielectric response of an organic aminopyridine NLO single crystal. J. Miner. Mater. Charact. Eng. 10, 1225 (2011). https://doi.org/10.4236/jmmce.2011.1013095.

    Article  Google Scholar 

  32. K.M. Manikandan, A. Yelilarasi, P. Senthamaraikannan, S.S. Saravanakumar, A. Khan, and A.M. Asiri, A study on optical limiting properties of Eosin-Y and Eriochrome Black-T dye-doped poly (vinyl alcohol) composite film. Int. J. Polym. Anal. Charact. 24, 336 (2019).

    Google Scholar 

  33. A.A.M. Farag and I.S. Yahia, Rectification and barrier height \is inhomogeneous in Rhodamine B-based organic Schottky diode. Synth. Met. 161, 32 (2011).

    Article  CAS  Google Scholar 

  34. H.M. Gomaa, Influence of Bi2O3 on the physical and electrical properties of some Boro-Iron glasses. J. Non-Crystall. Solids 481, 51 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.012.

    Article  CAS  Google Scholar 

  35. A. Moguš-Milanković, B. Šantić, C.S. Ray, and D.E. Day, Electrical relaxation in mixed alkali iron pyrophosphate glasses. J. Non-Cryst. Solids 263, 299 (2000).

    Article  Google Scholar 

  36. B. Julian, R. Corberan, E. Cordoncillo, P. Esoribano, B. Viana, and C. Sanchez, Nanotechnology 16, 2707 (2005). https://doi.org/10.1088/0957-4484/16/11/040.

    Article  CAS  Google Scholar 

  37. R.J. Barczynski and L. Murawski, Mixed electronic–ionic conductivity in transition metal oxide glasses containing alkaline ions. J. Non-Cryst. Solids 307, 1055 (2002).

    Article  Google Scholar 

  38. R.A. Montani, A. Lorente, and M.A. Frechero, Effect of Ag2O on the conductive behaviour of silver vanadium tellurite glasses: part II. Solid State Ion. 146, 323 (2002).

    Article  CAS  Google Scholar 

  39. K. Varshneya, Fundamentals of Inorganic Glassses (San Diego: Acadimic Press Inc, 1994).

    Google Scholar 

  40. H.M. El-Mallah, AC electrical conductivity and dielectric properties of perovskite (Pb, Ca) TiO3 ceramic. Acta Phys. Polon.-Ser. A General Phys. 122, 174 (2012).

    CAS  Google Scholar 

  41. P.J. Brigandi, J.M. Cogen, and R.A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 54, 1 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education, in Saudi Arabia, for funding this research work through the project number: (IFP-KKU-2020/9).

Author information

Authors and Affiliations

Authors

Contributions

All authors did equal contributions.

Corresponding author

Correspondence to Hosam M. Gomaa.

Ethics declarations

Conflict of interest

The authors confirm that there is no conflict of interest or competing interest with regard to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, H.M., AlAbdulaal, T.H., Yahia, I.S. et al. Exploring the Optical and Electrical Properties of 70%PVP/30%PVA Blend Polymer Doping with Graphene Thin Films For Optoelectronics Applications. J. Electron. Mater. 51, 5897–5907 (2022). https://doi.org/10.1007/s11664-022-09842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09842-x

Keywords

Navigation