Skip to main content
Log in

Platinum nanoparticles assembled on different carbon materials and flower-like CeO2 for methanol electro-oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The application of direct methanol fuel cells is hampered by not only low activity but also poor stability and CO tolerance of Pt catalyst. The electrocatalytic activity and stability of platinum nanoparticles assembled on different kinds of flower-like CeO2 (fCeO2)/[Graphene (G), Carbon Vulcan (XC-72) and Ordered Mesoporous Carbon (CMK-3)] composite supports for methanol electro-oxidation were investigated. The catalyst samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, and X-ray photoelectron spectroscopic. The electrochemical properties of the catalysts were measured by a three electrode system on electrochemical workstation (IVIUM). The results show that the Pt grain size of Pt-fCeO2/G catalyst is the smallest. Compared with Pt-fCeO2/XC-72 and Pt-fCeO2/CMK-3, Pt-fCeO2/G has the lowest binding energies of Pt(0) and more hydroxyl, carbonyl, carboxyl and other oxygen-containing functional groups. This kind of oxygen-containing functional group can facilitate methanol oxidation and relieve CO poisoning. The mass-specific activity of Pt-fCeO2/G is 2.2 and 3.6 times higher than that of Pt-fCeO2/CMK-3 and Pt-fCeO2/XC-72, respectively. The activation energy of Pt-fCeO2/G catalyst for electrocatalytic oxidation methanol is the lowest, which is 16.63 kJ mol−1. Pt-fCeO2/G appears to be a promising and cost effective methanol oxidation anode catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Wang, Z. Liu, S. An, R. Wang, Y. Wang, Effect of CeO2–ZrO2 on Pt/C electrocatalysts for alcohols oxidation. J. Rare Earth 34, 276–282 (2016)

    Article  CAS  Google Scholar 

  2. X. Zhang, P. Dong, Y. Zhang, X. Yang, S. Xia, Z. Jin, M. Xu, Pd nanoparticles self-assembled on fluorine-modified MWCNTs as electro-catalysts for methanol electro-oxidation. Nano 12, 346–349 (2017)

    Google Scholar 

  3. G. Chen, Z. Dai, L. Sun, L. Zhang, S. Liu, H. Bao, J. Bi, S. Yang, F. Ma, Synergistic effects of platinum–cerium carbonate hydroxides-reduced graphene oxide on enhanced durability for methanol electro-oxidation. J. Mater. Chem. A 7, 6562–6571 (2019)

    Article  CAS  Google Scholar 

  4. S. Chen, W. Sheng, N. Yabuuchi, Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J. Phys. Chem. C 113, 1109–1125 (2009)

    Article  CAS  Google Scholar 

  5. S. Koh, M. Toney, F. Michael, P. Strasser, Activity–stability relationships of ordered and disordered alloy phases of Pt3Co electrocatalysts for the oxygen reduction reaction (ORR). Electrochim. Acta 52, 2765–2774 (2007)

    Article  CAS  Google Scholar 

  6. W. Wang, X. Lu, M. Zhu, Rod-shaped CeO2 intercalated graphene for supporting Pt composite as anode catalysts for DMFCs. Electrochim. Acta 176, 1338–1342 (2015)

    Article  CAS  Google Scholar 

  7. L. Gong, Z. Yang, Recent development of methanol electrooxidation catalysts for direct methanol fuel cell. High Energy Chem. 27, 1618–1628 (2018)

    Article  Google Scholar 

  8. C. Lo Vecchio, D. Sebastian, Carbon-supported Pd and Pd–Co cathode catalysts for direct methanol fuel cells (DMFCs) operating with high methanol concentration. Electroanal. Chem. 808, 464–473 (2018)

    Article  CAS  Google Scholar 

  9. J. Cao, Y. Chu, X. Tan, Pt/XC-72 catalysts coated with nitrogen-doped carbon (Pt/XC-72@C–N) for methanol electro-oxidation. Mater. Chem. Phys. 144, 17–24 (2014)

    Article  CAS  Google Scholar 

  10. M. Anbia, S. Mandegarzad, Enhanced hydrogen sorption on modified MIL-101 with Pt/CMK-3 by hydrogen spillover effect. J. Alloys Compd. 532, 61–67 (2012)

    Article  CAS  Google Scholar 

  11. M. Sakthivel, J. Drillet, An extensive study about influence of the carbon support morphology on Pt activity and stability for oxygen reduction reaction. Appl. Catal. B-Environ. 231, 62–72 (2018)

    Article  CAS  Google Scholar 

  12. G. Gupta, D. Slanac, P. Kumar, Highly stable and active Pt–Cu oxygen reduction electrocatalysts based on mesoporous graphitic carbon supports. Chem. Mater. 21, 4515–4526 (2009)

    Article  CAS  Google Scholar 

  13. S. Koh, P. Strasser, Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 129, 12624–12625 (2007)

    Article  CAS  Google Scholar 

  14. P. Mani, R. Srivastava, P. Strasser, Dealloyed PtCu coreShell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J. Phys. Chem. C 112, 2770–2778 (2012)

    Article  CAS  Google Scholar 

  15. J. Ji, P. Dong, Y. Lin, X. Zeng, X. Li, X. Yang, One-pot synthesis of PdM/RGO (M = Co, Ni, or Cu) catalysts under the existence of PEG for electro-oxidation of methanol. J. Nanopart. Res. 20, 192 (2018)

    Article  CAS  Google Scholar 

  16. R. Nair, P. Blake, A. Grigorenko, Fine structure constant defines visual transparency of graphene. Science 320, 1308 (2008)

    Article  CAS  Google Scholar 

  17. S. Woo, J. Lee, S. Park, Enhanced electrocatalysis of PtRu onto graphene separated by vulcan carbon spacer. J. Power Sources 222, 261–266 (2013)

    Article  CAS  Google Scholar 

  18. Z. Huang, J. Fryer, C. Park, Transmission electron microscopy, energy dispersive X-ray spectroscopy, and chemisorption studies of Pt-Ge/γ-Al2O3 reforming catalysts. J. Catal. 175, 226–235 (1998)

    Article  CAS  Google Scholar 

  19. S. Sharma, B. Pollet, Support materials for PEMFC and DMFC electrocatalysts: a review. J. Power Sources 208, 96–119 (2012)

    Article  CAS  Google Scholar 

  20. E. Yoo, T. Okata, T. Akita, Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett. 9, 2255–2259 (2009)

    Article  CAS  Google Scholar 

  21. E. Antolini, Carbon supports for low-temperature fuel cell catalysts. Appl. Catal. B-Environ. 88, 1–24 (2009)

    Article  CAS  Google Scholar 

  22. S. Shahgaldi, J. Hamelin, Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon 94, 705–728 (2015)

    Article  CAS  Google Scholar 

  23. A. Santasalo-Aarnio, M. Borghei, Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell. Int. J. Hydrogen Energy 37, 3415–3424 (2012)

    Article  CAS  Google Scholar 

  24. Y. Chu, Z. Wang, Z. Jiang, A novel structural design of a Pt/C-CeO2 catalyst with improved performance for methanol electro-oxidation by β-cyclodextrin carbonization. Adv. Mater. 23, 3100–3140 (2011)

    Article  CAS  Google Scholar 

  25. X. Chang, F. Dong, S. Yang, Z. Tang, Well dispersed Pt nanoparticles on commercial carbon black oxidized by ozone possess significantly high electro-catalytic activity for methanol oxidation. Int. J. Hydrogen Energy 44, 21559–21568 (2019)

    Article  CAS  Google Scholar 

  26. X. Chang, F. Dong, Z. Tang, F. Zha, Construction of carboxyl functional groups and their enhancement effect for methanol electrocatalytic oxidation reaction. Int. J. Hydrogen Energy 44, 27445–27454 (2019)

    Article  CAS  Google Scholar 

  27. X. Chang, F. Dong, Z. Tang, F. Zha, The novel three dimensional carbon nanosheets as high performance catalyst support for methanol electrooxidation. Int. J. Hydrogen Energy 45, 8975–8984 (2020)

    Article  CAS  Google Scholar 

  28. S. Liu, F. Dong, Z. Tang, Q. Wang, Methanol electrocatalytic oxidation over Pt nanoparticles anchoring on three-dimensional carbon nanosheet rich in oxygen functional groups. Int. J. Hydrogen Energy 45, 30547–30558 (2020)

    Article  CAS  Google Scholar 

  29. Y. Hu, P. Wu, H. Zhang, C. Cai, Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysts toward the methanol oxidation reaction. Electrochim. Acta 85, 314–321 (2012)

    Article  CAS  Google Scholar 

  30. A. Sa, A. Capelo, A. Esteves, L. Cangueiro, Key issues to high electroactivity for methanol oxidation and oxygen reduction of Pt-based supported catalyst in fuel cells relevant environment. Ciência & Tecnologia dos Materiais 28, 88–98 (2016)

    Article  Google Scholar 

  31. W. Yuan, Y. Zhang, N. Zhang, Carbon riveted Pt-MnO2/reduced graphene oxide anode catalyst for DMFC. Catal. Commun. 100, 66–70 (2017)

    Article  CAS  Google Scholar 

  32. E. Ringe, J. Tour, DMFC catalyst with single Ru atoms on graphene matches Pt. Fuel cells Bull. 17, 30238–30239 (2017)

    Google Scholar 

  33. Q. Shi, R. Sun, Adsorption manners of hydrogen on Pt(100), (110) and (111) surfaces at high coverage. Comput. Theor. Chem. 1106, 43–49 (2017)

    Article  CAS  Google Scholar 

  34. T. Tran, Y. Takimoto, O. Suginoac, First-principles thermodynamic description of hydrogen electroadsorption on the Pt(111) surface. Surf. Sci. 625, 104–111 (2014)

    Article  CAS  Google Scholar 

  35. M. Ayán-Varela, R. Ruiz-Rosas, S. Villar-Rodil, Efficient Pt electrocatalysts supported onto flavin mononucleotide-exfoliated pristine graphene for the methanol oxidation reaction. Electrochim. Acta 231, 386–395 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51864038, 51974167, 51762036) and Inner Mongolia Autonomous Region Higher Education School “Youth Technology Talent Support Program” Category A (NJYT-19-A20).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingchun Wang or Shengli An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Liu, S., An, S. et al. Platinum nanoparticles assembled on different carbon materials and flower-like CeO2 for methanol electro-oxidation. J Mater Sci: Mater Electron 32, 26425–26438 (2021). https://doi.org/10.1007/s10854-021-07021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07021-y

Navigation