Skip to main content

Advertisement

Log in

Electrical characterization of Cu-doped CdS p-type thin film transistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, the growth of CdS thin films by chemical bath deposition, and doping of the active layer by ion exchange method to fabricate a pseudo-metal–oxide–semiconductor field-effect transistor (Ψ-MOSFET) is reported. The introduction of copper ions as dopants in CdS films was employed to control the semiconductor bandgap and to produce transistors with adjustable channel currents. A cubic crystalline structure was corroborated by the preferential cubic (111) plane located at 2θ = 26.75°, detected on both CdS as-grown and Cu-doped CdS samples. The optical absorption edges were located near 515 and 505 nm, for as undoped and doped samples, respectively. In addition, the calculated bandgap presented a slight variation from 2.40 to 2.46 eV, after copper doping. To compare the performance between undoped and Cu-doped CdS films as active layer in thin film transistors, pseudo-MOSFET devices were manufactured. The surface morphology of the CdS films was studied by atomic force microscopy and electron microscopy. The SEM cross-section micrograph of the device showed a 110-nm-thick CdS layer deposited on SiO2/Si–n substrates. Electrical characterization showed that the addition of Cu ions into CdS films produced improvements on the electrical behavior of the thin film transistors (TFTs). It was found that after Cu doping, the channel was modified from n to p-type. In addition, the resistivity increased along the transistor channel, while the calculated mobilities values of 0.02 and 6.6 cm2V−1S−1 were obtained for p-type and n-type TFTs, respectively. The threshold voltage value was − 6.4 eV and 5.64 eV corresponding to the Cu-doped and undoped devices, respectively. These results represent a promising contribution to the development of thin film transistors with the possibility of selecting the n-type or p-type behavior by the introduction of Cu ions and modifying its electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, M. Ghodrati, One-step sonochemical synthesis of Zn(OH)2/ZnV3O8 nanostructures as a potent material in electrochemical hydrogen storage. J. Mater. Sci: Mater. Electron. 20, 17332–17338 (2020)

    Google Scholar 

  2. F. Beshkar, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Preparation and characterization of the CuCr2O4 nanostructures via a new simple route. J. Mater. Sci. Mater. Electron. 26, 5043–5051 (2015)

    Article  CAS  Google Scholar 

  3. S. Zinatloo-Ajabshir, M. Sadat Morassaei, O. Amiri, M. Salavati-iasari, L. Kok-Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  CAS  Google Scholar 

  4. S. Ashrafi, M. Mousavi-Kamazan, S. Zinatloo-Ajabshir, A. Asghari, Novel sonochemical synthesis of Zn nanostructures for electrochemical hydrogen storage. J. Hydrog. Energy 42, 21611–21624 (2020)

    Article  Google Scholar 

  5. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Facile synthesis of nanocrystalline neodymium zirconate for highly efficient photodegradation of organic dyes. J. Mol. Liq. 243, 219–226 (2017)

    Article  CAS  Google Scholar 

  6. N.A. Shah, R.R. Sagar, W. Mahmood, W.A.A. Syed, Cu-doping effects on the physical properties of cadmium sulfide thin films. J. Alloys Compd. 512, 185–189 (2012)

    Article  CAS  Google Scholar 

  7. R. Panda, V. Rathore, M. Rathore, V. Shelke, N. Badera, L.S. SharathChandra, D. Jain, M. Gangrade, T. Shripati, V. Ganesan, Carrier recombination in Cu doped CdS thin films: photocurrent and optical studies. Appl. Surf. Sci. 258, 5086–5093 (2012)

    Article  CAS  Google Scholar 

  8. M. Shkir, I.M. Ashraf, A. Khan, M.T. Khan, A.M. El-toni, S. AlFaify, A facile spray pyrolysis fabrication of Sm:CdS thin films for high-performance photodetector applications. Sensors Actuators 306, 111952 (2020)

    Article  CAS  Google Scholar 

  9. T. Abe, J. Sato, S. Ohashi, M. Watanabe, Y. Kashiwaba, Light emission of CdS(Cu)/CdS thin-film diode. Physica Status Solidi (b) 229, 1015–1018 (2002)

    Article  CAS  Google Scholar 

  10. R. Ochoa-Landin, J. Sastre-Hernandez, O. Vigil-Galan, R. Ramirez-Bon, Chemically deposited CdS by an ammonia-free process for solar cells window layers. Sol. Energy 84, 208–214 (2010)

    Article  CAS  Google Scholar 

  11. M.L. Albor Aguilera, J.M. Flores Marquez, M.A. Gonzalez Trujillo, Y. Matsumoto Kuwahara, G. Rueda Morales, O. Vigil Galan, Influence of CdS thin films growth related with the substrate properties and conditions used on CBD technique. Energy Procedia 44, 111–117 (2014)

    Article  Google Scholar 

  12. B.A. Ahmed, I.H. Shallal, F.I.M. Al-Attar, Physical properties of CdS/CdTe/CIGS thin films for solar cell application. J. Phys. Conf. Series. 1032, 012022 (2018)

    Article  Google Scholar 

  13. T. Mendivil-Reynoso, D. Berman-Mendoza, L.A. Gonzales, S.J. Castillo, A. Apolinar-Iribe, B. Gnade, M.A. Quevedo-Lopez, R. Ramirez-Bon, Fabrication and electrical characteristics of TFTs based on chemically deposited CdS films, using glycine as a complexing agent. Semiconduct. Sci. Technol. 26, 115010 (2011)

    Article  Google Scholar 

  14. M.G. Syamala-Rao, S. Meraz-Davila, M.A. Quevedo-Lopez, R. Ramirez-Bon, Complete solution-processed low-voltage hybrid CdS thin-film transistors with polyvinyl phenol as a gate dielectric. IEEE Electron Device Lett. 39, 703–706 (2018)

    Article  CAS  Google Scholar 

  15. R.K. Nahar, V. Singh, A. Sharma, Study of electrical and microstructure properties of high dielectric hafnium oxide thin film for MOS devices. J. Mater. Sci. Mater. Electron. 18, 615–619 (2007)

    Article  CAS  Google Scholar 

  16. D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectric for field effect transistors. Macromol. Symp. 347, 81–86 (2015)

    Article  CAS  Google Scholar 

  17. D. Dastan, A. Banpurkar, Solution processable sol–gel derived titania gate dielectric for organic field effect transistors. J. Mater. Sci. Mater. Electron. 28, 3851–3859 (2016)

    Article  Google Scholar 

  18. A. Tixier-Mita, S. Ihida, B.D. Ségard, G.A. Cathcart, T. Takahashi, H. Fujita, H. Toshiyoshi, Review on thin-film transistor technology, its applications, and possible new applications to biological cells. Jpn. J. Appl Phys. 55, 04EA08-1–9 (2016)

    Article  Google Scholar 

  19. O.I. Diaz-Grijalva, D. Berman-Mendoza, A. Flores-Pacheco, R. López-Delgado, A. Ramos-Carrazco, M.E. Alvarez-Ramos, Cu-doped CdS thin films by chemical bath deposition and ion exchange. J. Mater. Sci. Mater. Electron. 31, 1722–1730 (2020)

    Article  CAS  Google Scholar 

  20. M.A. Islam, M.S. Hossain, M.M. Aliyu, P. Chelvanathan, Q. Huda, M.R. Karim, K. Sopian, N. Amin, Comparison of structural and optical properties of CdS thin films grown by CSVT, CBD and sputtering techniques. Energy Procedia 33, 203–213 (2013)

    Article  CAS  Google Scholar 

  21. W. Mahmood, J. Ali, I. Zahid, A. Thomas, A.U. Haq, Optical and electrical studies of CdS thin films with thickness variation. Optik 158, 1558–1566 (2018)

    Article  CAS  Google Scholar 

  22. M. Shkir, I.M. Ashraf, K.V. Chandekar, I.S. Yahia, A. Khan, H. Algarni, S. Alfaify, A significant enhancement in visible-light photodetection properties of chemical spray pyrolysis fabricated CdS thin films by novel Eu doping concentrations. Sensors Actuators A 301, 111749 (2020)

    Article  CAS  Google Scholar 

  23. N. Saxena, P. Kumar, V. Gupta, Target swapping in PLD: an efficient approach for CdS/SiO2 and CdS: Ag (1%)/SiO2 nanocomposite thin films with enhanced luminescent properties. J. Lumin. 186, 62–67 (2017)

    Article  CAS  Google Scholar 

  24. I.S. Yahia, I.M. El Radaf, A.M. Salem, G.B. Sakr, Chemically deposited Ni-doped CdS nanostructured thin films: optical analysis and current-voltage characteristics. J. Alloys Compd. 776, 1056–1062 (2019)

    Article  CAS  Google Scholar 

  25. R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, Parutagouda Shankaragouda Patil, Effect of Aluminium doping on photoluminescence and third-order nonlinear optical properties of nanostructured CdS thin films for photonic device applications. Physica B 555, 145–151 (2019)

    Article  CAS  Google Scholar 

  26. F.J. Willars Rodriguez, I.R. Chavez Urbiola, M.A. Hernandez Landaverde, P. Vorobiev, R. Ramirez Bon, Yu.V. Vorobiev, Effects of tin-doping on cadmium sulfide (CdS:Sn) thin-films grown by light assisted chemical bath deposition process for solar photovoltaic cells. Thin Solid Films 653, 341–349 (2018)

    Article  CAS  Google Scholar 

  27. J.-H. Lee, J.-S. Yi, K.-J. Yang, J.-H. Park, Oh. Ryum-Duk, Electrical and optical properties of boron doped CdS thin films prepared by chemical bath deposition. Thin Solid Films 431–432, 344–348 (2003)

    Article  Google Scholar 

  28. M. Muthusamy, S. Muthukumaran, Effect of Cu-doping on structural, optical and photoluminescence properties of CdS thin films. Optik 126, 5200–5206 (2015)

    Article  CAS  Google Scholar 

  29. S.R. Ferra-Gonzalez, D. Berman-Mendoza, R. Garcia-Gutierrez, S.J. Castillo, R. Ramirez-Bon, B.E. Gnade, M.A. Quevedo-Lopez, Optical and structural properties of CdS thin films grown by chemical bath deposition doped with Ag by ion exchange. Optik 125, 1533–1536 (2014)

    Article  CAS  Google Scholar 

  30. R. Murugesan, S. Sivakumar, K. Karthik, P. Anadan, M. Haris, Effect of Mg/Co on the properties of CdS thin films deposited by spray pyrolysis. Curr. Appl. Phys. 19, 1136–1144 (2019)

    Article  Google Scholar 

  31. M. Ristova, M. Ristov, P. Tosev, M. Mitreski, Silver doping of thin CdS fillms by an ion exchange process. Thin Solid Films 315, 301–304 (1998)

    Article  CAS  Google Scholar 

  32. A.A. Aboud, A. Mukherjee, N. Revaprasadu, A. Nagaty Mohamed, The effect of Cu-doping on CdS thin films deposited by the spray pyrolysis technique. J. Mater. Res. Technol. 8(2), 2021–2030 (2019)

    Article  CAS  Google Scholar 

  33. G. Lei-Tan, D. Tang, D. Dastan, A. Jafari, Z. Shi, Q. Qian-Chu, J.P.B. Silva, X. Tao-Yin, Morphological control, and antibacterial performance of tungsten oxide thin films. Ceram. Int. 47, 17153–17160 (2021)

    Article  Google Scholar 

  34. S. Talu, S.K.M. Bramowicz, K.S.D. Dastan, Analysis of the surface microtexture of sputtered indium tin oxide thin films. Arch. Metall. Mater. 66, 443–450 (2021)

    CAS  Google Scholar 

  35. L. Jia-Ning, C. Feng-Xiang, D. Wen, Y. Xue-Ling, W. Li-Sheng, Research on optically-controlled resistive switching effects of CdS nanowire memtransistor. Chin. Phys. B 30(8), 1056–1674 (2021)

    Google Scholar 

  36. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen 26, 98 (1918)

    Google Scholar 

  37. J.I. Langford, A.J.C. Wilson, Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J. Appl. Cryst. 11, 102 (1978)

    Article  CAS  Google Scholar 

  38. V. Uvarov, I. Popov, Metrological characterization of X-ray diffraction methods for determination of crystallite size in nano-scale materials. Mater. Charac. 85, 111 (2013)

    Article  CAS  Google Scholar 

  39. H.K. Webb, V. Khanh Truong, J. Hasan, Ch. Fluke, R.J. Crawford, E.P. Ivanova, Roughness parameters for standard description of surface nanoarchitecture. Scanning 34, 257–263 (2012)

    Article  CAS  Google Scholar 

  40. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 15(2), 627–637 (1966)

    Article  CAS  Google Scholar 

  41. A. Ibrahim, S.K.J. Al-Ani, Models of optical absorption in amorphous semiconductors at the absorption edge—a review and re-evaluation. Czechoslov. J. Phys. 44(8), 785–797 (1994)

    Article  CAS  Google Scholar 

  42. D. Dastan, Nanostructured anatase titania thin films prepared by so–gel dip coating technique. J. Atomic Molecul. Condensate Nano Phys. (JAMCNP) 2, 109–114 (2015)

    Article  Google Scholar 

  43. D. Dastan, N.B. Chaure, P.U. Londhe, Characterization of TiO2 nanoparticles prepared using different surfactants by sol-gel method. J. Mater. Sci. Mater. Electron. 25, 3473–3479 (2014)

    Article  CAS  Google Scholar 

  44. V.H. Martinez-Landeros, N. Hernandez-Como, G. Gutierrez-Heredia, R. Ramirez-Bon, M.A. Quevedo-Lopez, F.S. Aguirre-Tostado, Low-temperature thin film transistors based on pulsed laser deposited CdS active layers. Semiconduct. Sci. Technol. 34, 025008 (2019)

    Article  CAS  Google Scholar 

  45. A.L. Sala-Villasenor, I. Mejia, J. Hovarth, H.N. Alshareef, M.A. Quevedo-Lopez, Impact of gate dielectric in carrier mobility in low temperature chalcogenide thin film transistors for flexible electronics. Electrochem. Solid State Lett. 13, 313–316 (2010)

    Article  Google Scholar 

  46. U. Jung, Y. Gon Lee, J. Ju Kim, S. Kyung Lee, I. Mejia, A. Salas-Villasenor, M. Quevedo-Lopez, B. Hun Lee, Indicators of mobility extraction error in bottom gate CdS metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 101, 182106 (2012)

    Article  Google Scholar 

  47. S. Grazulis, D. Chateigner, R.T. Downs, A.T. Yokochi, M. Quiros, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, A. Le Bail, Crystallography open database—an open-acces collection of crystal structures. J. Appl. Crys. 42, 726–729 (2009)

    Article  CAS  Google Scholar 

  48. M. Maghouli, H. Eshghi, Effect of deposition time on physical properties of nanostructured CdS thin films grown by chemical bath deposition technique. Superlattices Microstruct. 128, 327–333 (2019)

    Article  CAS  Google Scholar 

  49. P.J. Sebastian, P-type CdS thin films formed by in situ Cu doping in the chemical bath. Appl. Phys. Lett 62, 2956–2958 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge to CONACyT projects: FORDECYT 272894, Basic Science 242508 and National Laboratories 294452 for their support. The authors thanks to the nanoFAB Laboratory for using its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Berman-Mendoza.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berman-Mendoza, D., Diaz-Grijalva, O.I., López-Delgado, R. et al. Electrical characterization of Cu-doped CdS p-type thin film transistors. J Mater Sci: Mater Electron 32, 25462–25472 (2021). https://doi.org/10.1007/s10854-021-07006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07006-x

Navigation