Skip to main content
Log in

Optimization of sintering process and enhanced hybrid improper ferroelectricity of Ca3Ti2O7 ceramics fabricated by an acetic acid sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ca3Ti2O7 materials exhibit hybrid improper ferroelectricity due to the rotation and tilt coupling of TiO6 octahedron. However, the lower remnant polarization of Ca3Ti2O7 ceramics obtained by conventional solid-state method limits its practical application. Herein, the single-phase Ca3Ti2O7 ceramics with enhanced ferroelectricity were synthesized using an acetic acid sol–gel method and two-stage sintering. The sintering process does not significantly change the distortion amplitude of TiO6 octahedron in Ca3Ti2O7 ceramics but has a greater impact on the grain size and the concentration of oxygen vacancy. The synergistic effects of grain size and oxygen vacancy have been achieved in the Ca3Ti2O7 ceramics prepared by the optimal sintering process (1400 °C/12 h − 1550 °C/18 h), which leads to its enhanced hybrid ferroelectricity (Pr = 1.34 μC/cm2 and EC = 120 kV/cm). These findings demonstrate that the sol–gel method is an effective approach to obtain the Ca3Ti2O7 materials with enhanced hybrid improper ferroelectricity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Zhao, J.P. Zhu, H.L. Wang, Z. Ma, L.H. Gao, Y.B. Liu, Y. Liu, Y.C. Shu, J.L. He, Ceram Int. 47, 5549–5558 (2020). https://doi.org/10.1016/j.ceramint.2020.10.139

    Article  CAS  Google Scholar 

  2. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, Int. J. Appl. Ceram. Technol. 11, 157–176 (2014). https://doi.org/10.1111/ijac.12237

    Article  CAS  Google Scholar 

  3. W. Wang, Y. Jiang, P.J. Thomas, Sensors. 21, 1112 (2021). https://doi.org/10.3390/s21041112

    Article  CAS  Google Scholar 

  4. G.H. Haertling, J Am Ceram Soc. 82, 797–818 (2010). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x

    Article  Google Scholar 

  5. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, K. Powers, Mater. Chem. Phys. 162, 299–307 (2015). https://doi.org/10.1016/j.matchemphys.2015.05.071

    Article  CAS  Google Scholar 

  6. S. Pattipaka, J.P. Goud, G.P. Bharti, K.C.J. Raju, A. Khare, D. Pamu, J. Mater. Sci: Mater Electron. 31, 2986–2996 (2020). https://doi.org/10.1007/s10854-019-02842-4

    Article  CAS  Google Scholar 

  7. H. Li, C.R. Bowen, Y. Yang, Adv. Funct. Mater. 31, 2100905 (2021). https://doi.org/10.1002/adfm.202100905

    Article  CAS  Google Scholar 

  8. Y.H. Tian, F. Xue, L. Tang, W. Li, L. Jing, S, Li. J Mater Sci: Mater Electron. 32, 18825–18836 (2021). https://doi.org/10.1007/s10854-021-06399-z

    Article  CAS  Google Scholar 

  9. Q. Xu, W. Huang, R. Deng, H. Chen, H. Liu, J. Mater. Sci: Mater Electron. 32, 13539–13548 (2021). https://doi.org/10.1007/s10854-021-05930-6

    Article  CAS  Google Scholar 

  10. A.E. Hannora, M.A. Abbas, M.M. El-Desoky, J. Mater. Sci: Mater Electron. 32, 3998–4007 (2021). https://doi.org/10.1007/s10854-020-05142-4

    Article  CAS  Google Scholar 

  11. F.T. Huang, S.W. Cheong, Nat. Rev. Mater. 2, 17004 (2017). https://doi.org/10.1038/natrevmats.2017.4

    Article  Google Scholar 

  12. F.T. Huang, F. Xue, B. Gao, L.H. Wang, X. Luo, W. Cai, X.Z. Lu, J.M. Rondinelli, L.Q. Chen, S.W. Cheong, Nat. Commun. 7, 11602 (2016). https://doi.org/10.1038/ncomms11602

    Article  CAS  Google Scholar 

  13. S. Liu, H. Zhang, S. Ghose, M. Balasubramanian, Z.X. Liu, S.G. Wang, Y.S. Chen, B. Gao, J. Kim, S.W. Cheong, T.A. Tyson, Phys. Rev. B. 99, 224105 (2019). https://doi.org/10.1103/PhysRevB.99.224105

    Article  CAS  Google Scholar 

  14. N.A. Benedek, C.J. Fennie, Phys. Rev. Lett. 106, 107204 (2011). https://doi.org/10.1103/physrevlett.106.107204

    Article  Google Scholar 

  15. Y.S. Oh, X. Luo, F.T. Huang, Y.Z. Wang, S.W. Cheong, Nat. Mater. 14, 407–413 (2015). https://doi.org/10.1038/nmat4168

    Article  CAS  Google Scholar 

  16. M.F. Liu, Y. Zhang, L.F. Lin, L. Lin, S.W. Yang, X. Li, Y. Wang, S.Z. Li, Z.B. Yan, X.Z. Wang, X.G. Li, S. Dong, J.M. Liu, Appl. Phys. Lett. 113, 022902 (2018). https://doi.org/10.1063/1.5037525

    Article  CAS  Google Scholar 

  17. S.M. Lei, M.Q. Gu, D. Puggioni, G. Stone, J. Peng, J.J. Ge, Y. Wang, B.M. Wang, Y.K. Yuan, K. Wang, Z.Q. Mao, J.M. Rondinelli, V. Gopalan, Nano Lett. 18, 3088–3095 (2018). https://doi.org/10.1021/acs.nanolett.8b00633

    Article  CAS  Google Scholar 

  18. Y.Z. Wang, F.T. Huang, X. Luo, B. Gao, S.W. Cheong, Adv. Mater. 29, 1601288 (2016). https://doi.org/10.1002/adma.201601288

    Article  CAS  Google Scholar 

  19. S. Yoshida, K. Fujita, H. Akamatsu, O. Hernandez, A.S. Gupta, F.G. Brown, H. Padmanabhan, A.S. Gibbs, T. Kuge, R. Tsuji, S. Murai, J.M. Rondinelli, V. Gopalan, K. Tanaka, Adv. Funct. Mater. 28, 1801856 (2018). https://doi.org/10.1002/adfm.201801856

    Article  CAS  Google Scholar 

  20. X.Q. Liu, J.W. Wu, X.X. Shi, H.J. Zhao, H.Y. Zhou, R.H. Qiu, W.Q. Zhang, X.M. Chen, Appl. Phys. Lett. 106, 202903 (2015). https://doi.org/10.1063/1.4921624

    Article  CAS  Google Scholar 

  21. G.J. Li, X.Q. Liu, J.J. Lu, H.Y. Zhu, X.M. Chen, J. Appl. Phys. 123, 014101 (2018). https://doi.org/10.1063/1.5001956

    Article  CAS  Google Scholar 

  22. C. Huang, W. Wong-Ng, W.F. Liu, X.N. Zhang, Y. Jiang, P. Wu, B.Y. Tong, H. Zhao, S.Y. Wang, J. Alloys Compd. 770, 582–588 (2019). https://doi.org/10.1016/j.jallcom.2018.08.172

    Article  CAS  Google Scholar 

  23. Z.Z. Hu, J.J. Lu, B.H. Chen, T.T. Gao, X.Q. Liu, W. Wen, X.M. Chen, J. Materiomics. 5, 618–625 (2019). https://doi.org/10.1016/j.jmat.2019.07.002

    Article  Google Scholar 

  24. B.H. Zhang, Z.Z. Hu, B.H. Chen, X.Q. Liu, X.M. Chen, J. Appl. Phys. 128, 054102 (2020). https://doi.org/10.1063/5.0014208

    Article  CAS  Google Scholar 

  25. X. Ji, C.B. Wang, W.K. Luo, G. Chen, S. Zhang, R. Tu, Q. Shen, J. Shi, L.M. Zhang, J. Sol-Gel Sci. Techn. 94, 205–212 (2020). https://doi.org/10.1007/s10971-019-05177-y

    Article  CAS  Google Scholar 

  26. H.D. Wu, W. Cai, C. Zhou, Q.W. Zhang, R.L. Gao, G. Chen, X.L. Deng, Z.H. Wang, C.L. Fu, Mater. Lett. 278, 128447 (2020). https://doi.org/10.1016/j.matlet.2020.128447

    Article  CAS  Google Scholar 

  27. Y. Cui, W. Gu, X.X. Kong, Z.D. Gao, S.Y. Yu, J. Mater. Sci-Mater. El. 30, 9194–9199 (2019). https://doi.org/10.1007/s10854-019-01248-6

    Article  CAS  Google Scholar 

  28. P. Visuttipitukul, P. Sooksaen, N. Yongvanich, Ferroelectrics 457, 82–88 (2013). https://doi.org/10.1080/00150193.2013.848755

    Article  CAS  Google Scholar 

  29. M.G. Garnica-Romo, A. Páez-Sánchez, L. García-González, I. Domínguez-López, L.L. Díaz-Flores, M. Villicaña-Mendez, J. Sol-Gel Sci. Techn. 74, 425–431 (2015). https://doi.org/10.1007/s10971-015-3617-4

    Article  CAS  Google Scholar 

  30. X.X. Wu, S.Y. Wang, W.N. Wong, G.U. Qiang, Y. Jiang, C. Wang, S. Ma, W.F. Liu, J. Adv. Ceram. 9, 120–128 (2020). https://doi.org/10.1007/s40145-020-0425-2

    Article  CAS  Google Scholar 

  31. R.H. Zhang, A.S. Gibbs, W.G. Zhang, P.S. Halasyamani, M.A. Hayward, Inorg. Chem. 56, 9988–9995 (2017). https://doi.org/10.1021/acs.inorgchem.7b01525

    Article  CAS  Google Scholar 

  32. B.H. Chen, T.L. Sun, X.Q. Liu, X.L. Zhu, H. Tian, X.M. Chen, Appl. Phys. Lett. 116, 042903 (2020). https://doi.org/10.1063/1.5138672

    Article  CAS  Google Scholar 

  33. C.Q. Zhu, X.H. Wang, Q.H. Zhao, Z.M. Cai, Z.Y. Cen, L.T. Li, J. Eur. Ceram. Soc. 39, 1142–1148 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.11.034

    Article  CAS  Google Scholar 

  34. T. Kusama, T. Omori, T. Saito, S. Kise, T. Tanaka, Y. Araki, R. Kainuma, Nat. Commun. 8, 354 (2017). https://doi.org/10.1038/s41467-017-00383-0

    Article  CAS  Google Scholar 

  35. Q.W. Zhang, W. Cai, Q.T. Li, R.L. Gao, G. Chen, X.L. Deng, Z.H. Wang, X.L. Cao, C.L. Fu, J. Alloys Compd. 794, 542–552 (2019). https://doi.org/10.1016/j.jallcom.2019.04.247

    Article  CAS  Google Scholar 

  36. A.C. Tomkiewicz, M. Tamimi, A. Huq, S. McIntosh, J. Mater. Chem. A. 3, 21864–21874 (2015). https://doi.org/10.1039/c5ta04193g

    Article  CAS  Google Scholar 

  37. Y.H. Ling, F. Wang, R.A. Budiman, T. Nakamura, K. Amezawa, Phys. Chem. Chem. Phys. 17, 7489–7497 (2015). https://doi.org/10.1039/c4cp05719h

    Article  CAS  Google Scholar 

  38. F.Q. Wang, W. Cai, C.L. Fu, R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, J. Mater. Sci-Mater. El. 30, 2177–2185 (2018). https://doi.org/10.1007/s10854-018-0489-8

    Article  CAS  Google Scholar 

  39. T. Fan, C. Ji, G. Chen, W. Cai, R.L. Gao, X.L. Deng, Z.H. Wang, C.L. Fu, Mater. Chem. Phys. 250, 123034 (2020). https://doi.org/10.1016/j.matchemphys.2020.123034

    Article  CAS  Google Scholar 

  40. X.W. Wang, P.B. Jia, X.E. Wang, B.H. Zhang, L.Y. Sun, Q.B. Liu, J. Mater, Sci-Mater. El. 27, 12134–12140 (2016). https://doi.org/10.1007/s10854-016-5366-8

    Article  CAS  Google Scholar 

  41. C.C. Wang, L.W. Zhang, Phys. Rev. B. 74, 024106 (2006). https://doi.org/10.1103/physrevb.74.024106

    Article  Google Scholar 

  42. T.F. Zhang, X.G. Tang, Q.X. Liu, Y.P. Jiang, X.X. Huang, J. Am. Ceram. Soc. 98, 551–558 (2015). https://doi.org/10.1111/jace.13317

    Article  CAS  Google Scholar 

  43. D.G. Chen, X.G. Tang, Q.X. Liu, Y.P. Jiang, C.B. Ma, R. Li, J. Appl. Phys. 113, 214110 (2013). https://doi.org/10.1063/1.4809541

    Article  CAS  Google Scholar 

  44. M. Kratochvilova, F.T. Huang, M.T.F. Diaz, M. Klicpera, S.J. Day, S.P. Thompson, Y.S. Oh, B. Gao, S.W. Cheong, J.G. Park, J. Appl. Phys. 125, 244102 (2019). https://doi.org/10.1063/1.5089723

    Article  CAS  Google Scholar 

  45. Y.L. Han, W.F. Liu, X.L. Xu, M.C. Guo, X.N. Zhang, P. Wu, J. Gao, G.H. Rao, S.Y. Wang, J. Am. Ceram. Soc. 99, 3616–3622 (2016). https://doi.org/10.1111/jace.14381

    Article  CAS  Google Scholar 

  46. F.P.G. Fengler, M. Pešic´, S. Starschich, T. Schneller, C. Künneth, U. Böttger, H. Mulaosmanovic, T. Schenk, M.H. Park, R. Nigon, P. Muralt, T. Mikolajick, U. Schroede, Adv. Electron. Mater. 3, 1600505 (2017). https://doi.org/10.1002/aelm.201600505

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program for Creative Research Groups in University of Chongqing, China (CXQT19031), the Innovation Program for Chongqing's Overseas Returnees, China (cx2019159), the Natural Science Foundation of Chongqing, China (CSTC2020jcyj-msxmX0030, CSTC2020jcyj-zdxmX0008), the National Training Program of Innovation and Entrepreneurship for Undergraduates (202011551001), the Chongqing KeHui Graduate Student Innovation and Entrepreneurship Competition (10111094, 10111043) and the Graduate Science and Technology Innovation Training Program Project of Chongqing University of Science and Technology (YKJCX2020220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Cai or Chunlin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Cai, W., Zhou, C. et al. Optimization of sintering process and enhanced hybrid improper ferroelectricity of Ca3Ti2O7 ceramics fabricated by an acetic acid sol–gel method. J Mater Sci: Mater Electron 32, 24328–24341 (2021). https://doi.org/10.1007/s10854-021-06902-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06902-6

Navigation