Skip to main content
Log in

Synthesis of 0.65CaTiO3–0.35SmAlO3 ceramics and effects of La2O3/SrO doping on their microwave dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

0.65CaTiO3–0.35SmAlO3 ceramics were synthesized via four calcination methods using a conventional solid-state technique. The reaction mechanism occurred between mixtures of CaCO3, TiO2, Sm2O3, and Al2O3 was studied by X-ray diffraction patterns. Sm2TiO7, CaSmAl3O7, Sm4Ti9O24 were detected in calcined mixtures, which could be converted into CaTiO3–SmAlO3 in ultimate sintered ceramics at a high temperature. Through comparing the comprehensive properties of 0.65CT–0.35SA ceramics sintered at 1450 °C, we determined the best calcination path as the fourth method. We then introduced La2O3/SrO to CTSA ceramics synthesized by the fourth method to improve the overall properties. Thereafter, the phase composition, microstructure, densification, dielectric performances and sintering characteristic of 1 wt% SrO doped 0.65CT–0.35SA specimens with various La2O3 additions were comprehensively investigated. We observed that after adding La2O3/SrO additives, the sintering temperature of CTSA ceramics was depressed to 1340 °C, while facilitating dielectric performances. However, the second-phase La10Al4O21 occurred due to the excessive amounts of La2O3 additions, which degraded the dielectric properties of 0.65CT–0.35SA ceramics. Synthetical properties of εr = 42.94, Q × f = 43680 GHz (f = 5.1 GHz), and τf = − 3.39 ppm/°C were achieved for 1 wt% SrO doped 0.65CT–0.35SA specimens with 0.5 wt% La2O3 additions sintered at 1340 °C, which were likely to be promising option for practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.S. Kim, D.H. Kang, Ceram. Int. 34(4), 883 (2008)

    Article  CAS  Google Scholar 

  2. G. Dou, D.X. Zhou, M. Guo et al., J. Mater. Sci.: Mater. Electron. 24(5), 1431 (2013)

    CAS  Google Scholar 

  3. S.Q. Yu, B. Tang, X. Zhang et al., J. Am. Ceram. Soc. 95(6), 1939 (2012)

    Article  CAS  Google Scholar 

  4. E.S. Kim, S.H. Kim, J. Electroceram. 17(2–4), 471 (2006)

    Article  CAS  Google Scholar 

  5. M.M. Mao, X.C. Fan, X.M. Chen, Int. J. Appl. Ceram. Technol. 7(1), 156 (2010)

    Article  Google Scholar 

  6. R. Muhammad, Y. Iqbal, J. Mater. Sci. 51(6), 2958 (2016)

    Article  CAS  Google Scholar 

  7. M.S. Fu, X.Q. Liu, S.M. Chen, J. Eur. Ceram. Soc. 28, 28585 (2008)

    Google Scholar 

  8. Z.M. Dou, J. Jiang, G. Wang et al., Ceram. Int. 42(6), 6743 (2016)

    Article  CAS  Google Scholar 

  9. B. Jancar, D. Suvorov, J. Mater. Sci. Lett. 20(1), 71 (2001)

    Article  CAS  Google Scholar 

  10. S.Y. Cho, I.T. Kim, K.S. Hong, J. Mater. Res. 14(1), 114 (1999)

    Article  CAS  Google Scholar 

  11. Y. Yang, R.L. Fu, S. Agathopoulos et al., Ceram. Int. 42(16), 18108 (2016)

    Article  CAS  Google Scholar 

  12. Y. Xu, R.L. Fu, S. Agathopoulos et al., J. Alloys Compd. 693, 454 (2017)

    Article  CAS  Google Scholar 

  13. D. Suvorov, M. Valant, B. Jancar et al., Acta Chim. Slov. 48(1), 87 (2001)

    CAS  Google Scholar 

  14. J. Jiang, D.H. Fang, C. Lu et al., J. Alloys Compd. 638, 443 (2015)

    Article  CAS  Google Scholar 

  15. Z.H. Qin, Y.F. Huang, C.Y. Shen et al., J. Mater. Sci.: Mater. Electron. 27(4), 4157 (2016)

    CAS  Google Scholar 

  16. F. Liang, M. Ni, W.Z. Lu et al., J. Alloys Compd. 568, 11 (2013)

    Article  CAS  Google Scholar 

  17. D. Pamu, G.L.N. Rao, K.C.J. Raju, J. Alloys Compd. 475(1–2), 745 (2009)

    Article  CAS  Google Scholar 

  18. F.X. Zhang, J.W. Wang, M. Lang et al., J. Solid State Chem. 183, 2636 (2010)

    Article  CAS  Google Scholar 

  19. F. Lichtenberg, A. Herrnberger, K. Wiedenmann et al., Prog. Solid State Chem. 29(1–2), 1 (2001)

    Article  CAS  Google Scholar 

  20. B. Jancar, D. Suvorov, M. Valant et al., J. Eur. Ceram. Soc. 23(9), 1391 (2003)

    Article  CAS  Google Scholar 

  21. Q.X. Zhang, P.J. McGinn, J. Am. Ceram. Soc. 95(11), 3363 (2006)

    Google Scholar 

  22. H.S. Zhu, Z.Y. Cui, C.Y. Shen, J. Mater. Sci.: Mater. Electron. 27(1), 177 (2016)

    CAS  Google Scholar 

  23. Q.L. Sun, H.Q. Zhou, X.F. Luo et al., Ceram. Int. 42(10), 12306 (2016)

    Article  CAS  Google Scholar 

  24. R.Z. Zuo, J. Zhang, J. Song et al., J. Am. Ceram. Soc. 101(2), 569 (2018)

    Article  CAS  Google Scholar 

  25. C.L. Huang, M.H. Weng, C.C. Wu et al., Jpn. J. Appl. Phys. 40(2A), 698 (2001)

    Article  CAS  Google Scholar 

  26. L.S. Hu, H.Q. Zhou, Q.L. Sun et al., J. Mater. Sci.: Mater. Electron. 27(12), 12834 (2016)

    CAS  Google Scholar 

  27. Y.J. Gu, C. Li, J.L. Huang et al., J. Eur. Ceram. Soc. 37(15), 4673 (2017)

    Article  CAS  Google Scholar 

  28. X.S. Lyu, L.X. Li, H. Sun et al., Ceram. Int. 42(1), 2036 (2016)

    Article  CAS  Google Scholar 

  29. R.D. Shannon, Appl. Phys. 73(1), 348 (1993)

    Article  CAS  Google Scholar 

  30. R.K. Bhuyan, T.S. Kumar, D. Goswami et al., J. Electroceram. 31(1–2), 48 (2013)

    Article  CAS  Google Scholar 

  31. H. Li, B. Tang, X. Li et al., J. Mater. Sci. 49(17), 5850 (2014)

    Article  CAS  Google Scholar 

  32. W.S. Kim, T.H. Hong, E.S. Kim et al., Jpn. J. Appl. Phys. 37, 5367 (1998)

    Article  CAS  Google Scholar 

  33. W.T. Xie, H.Q. Zhou, H.K. Zhu et al., Ceram. Int. 40(5), 6899 (2014)

    Article  CAS  Google Scholar 

  34. Q.L. Sun, H.Q. Zhou, H.K. Zhu et al., J. Mater. Sci.: Mater. Electron. 27(8), 7750 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of this work by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites.

Funding

This study was funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhou.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chang, Y., Xin, M. et al. Synthesis of 0.65CaTiO3–0.35SmAlO3 ceramics and effects of La2O3/SrO doping on their microwave dielectric properties. J Mater Sci: Mater Electron 29, 21205–21212 (2018). https://doi.org/10.1007/s10854-018-0270-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0270-z

Navigation