Skip to main content
Log in

Structurally enriched aliovalent Cd2+-doped SnO2 nanocrystals and their physicochemical investigations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, pristine and Cd2+ modified SnO2 compositions [Sn(1−y)CdyO2, where y = 0, 0.05, and 0.10] were synthesized by co-precipitation technique. Structural studies were carried out by X-ray diffraction (XRD) analysis which revealed that all the compositions exhibited tetragonal rutile-type crystal structure with P42/mnm space group with high purity (absence of secondary phases). FTIR spectra confirmed the formation of pristine and Cd2+ modified SnO2 nanocrystals as bend at 560 cm−1 attributed to Sn–O–Sn stretching vibrations. UV–Vis optical spectra displayed a sharp peak at ~ 304 nm and ~ 311 nm belonging to UV region (200–400 nm) and a small hump at 561 nm corresponding to the visible region for Cd2+-doped compositions. FESEM micrographs depicted the nano-scale formation of pristine and Cd2+ modified SnO2 nanocrystals calcined at 600 °C and showed that grain size increased from 45.66 ± 1.2 nm to 60.27 ± 2.7 nm with increasing Cd2+ concentrations. HRTEM images confirmed the tetragonal crystallinity of as-synthesized nanocrystals as fringes attributed to (110) plane orientation with d-spacing ~ 0.34 nm exactly matched with XRD studies. Dielectric analysis showed that dielectric constant decreased with increasing Cd2+ in the compositions and IV curves illustrated linear or ohmic behavior with diminishing values of resistances for higher Cd2+ concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. Ahmad, S. Khan, M.M.N. Ansari, Microstructural, optical and electrical transport properties of Cd-doped SnO2 nanoparticles. Mat. Res. Exp. 5(3), 035045 (2018)

    Article  Google Scholar 

  2. H.C. Chiu, C.S. Yeh, Hydrothermal synthesis of SnO2 nanoparticles and their gas sensing of alcohol. J. Phys. Chem. C 111, 7256–7259 (2007)

    Article  CAS  Google Scholar 

  3. C. Nayral, E. Viala, V. Collière, P. Fau, F. Senocq, A. Maisonnat, B. Chaudret, Synthesis and use of a novel SnO2 nanomaterial for gas sensing. Appl. Surf. Sci. 164, 219–226 (2000)

    Article  CAS  Google Scholar 

  4. H. Zhang, D. Wang, C. Hu, X. Kang, H. Liu, Synthesis and magnetic properties of Sn1xCoxO2 nanostructures and their application in gas sensing. Sens. Act. B Chem. 184, 288–294 (2013)

    Article  CAS  Google Scholar 

  5. W. Fliegel, G. Behr, J. Werner, G. Krabbes, Preparation, development of microstructure, electrical and gas- sensitive properties of pure and doped SnO2 powders. Sens. Actuators 19, 18–19 (1994)

    Article  Google Scholar 

  6. P. Sun, X. Zhou, C. Wang, B. Wang, X. Xu, G. Lu, One-step synthesis and gas sensing properties of hierarchical Cd-doped SnO2 nanostructures. Sens. Actuators B Chem. 190, 32–39 (2014)

    Article  CAS  Google Scholar 

  7. Z. Tianshu, P. Hing, Y. Li, Z. Jiancheng, Selective detection of ethanol vapor and hydrogen using Cd-doped SnO2-based sensors. Sens. Actuators B Chem. 60, 208–215 (1999)

    Article  Google Scholar 

  8. K. Inyawilert, A. Sukee, M. Siriwalai, A. Wisitsoraat, J. Sukunta, A. Tuantranont, S. Phanichphant, C. Liewhiran, Effect of Er doping on flame-made SnO2 nanoparticles to ethylene oxide sensing. Sen. Actuators B: Chem. 328, 129022 (2021)

    Article  CAS  Google Scholar 

  9. R.S. Zeferino, U. Pal, R. Melendrez, H.A. Duran-Munoz, M.B. Flores, Dose enhancing behavior of hydrothermally grown Eu-doped SnO2 nanoparticles. J. Appl. Phys. 113, 064306 (2013)

    Article  Google Scholar 

  10. K.T. Konno, J. Bandara, P.K.M. Bandaranayake, G.R.A. Kumara, A. Konno, Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2. Jpn. J. Appl. Phys. 40(7B), L732 (2001)

    Article  Google Scholar 

  11. C. Shen, H. Feng, Z. Xu, S. Jin, GaInN light-emitting diodes with omni-directional reflector using nanoporous SnO2 film. Chin. Opt. Lett. 6, 152–153 (2008)

    Article  CAS  Google Scholar 

  12. B. Orel, Electrochemical and structural properties of SnO2 and Sb: SnO2 transparent electrodes with mixed electronically conductive and ion-storage characteristics. J. Electrochem. Soc. 141, L127 (1994)

    Article  CAS  Google Scholar 

  13. E.N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, W. Lu, Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 7, 2463–2469 (2007)

    Article  CAS  Google Scholar 

  14. Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 129, 6070–6071 (2007)

    Article  CAS  Google Scholar 

  15. N. Ahmad, S. Khan, Effect of (Mn-Co) co-doping on the structural, morphological, optical, photoluminescence and electrical properties of SnO2. J. Alloys Compd. 720, 502–509 (2017)

    Article  CAS  Google Scholar 

  16. Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5, 1561–1573 (2005)

    Article  CAS  Google Scholar 

  17. S. Gnanam, V. Rajendran, Preparation of Cd-doped SnO2 nanoparticles by sol-gel route and their optical properties. J. Sol-Gel Sci. Technol. 56, 128–133 (2010)

    Article  CAS  Google Scholar 

  18. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, A. Schulte, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Phys. B Condens. Matter. 403, 3713–3717 (2008)

    Article  CAS  Google Scholar 

  19. K. Sujatha, T. Seethalakshmi, A.P. Sudha, O.L. Shanmugasundaram, Photocatalytic activity of pure, Zn doped and surfactants assisted Zn doped SnO2 nanoparticles for degradation of cationic dye. Nano-Struct. Nano-Objects 18, 100305 (2019)

    Article  CAS  Google Scholar 

  20. K. Rajwali, M.-H. Fang, Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles. Chin. Phys. B 24, 127803 (2015)

    Article  Google Scholar 

  21. H. Wang, Y. Yan, Y.S. Mohammed, X. Du, K. Li, H. Jin, The role of Co impurities and oxygen vacancies in the ferromagnetism of co-doped SnO2: GGA and GGA+U studies. J. Magn. Magn. Mater. 321, 3114–3119 (2009)

    Article  CAS  Google Scholar 

  22. S.A. Ahmed, Room-temperature ferromagnetism in pure and Mn doped SnO2 powders. Solid State Commun. 150, 2190–2193 (2010)

    Article  CAS  Google Scholar 

  23. C. Zhi-Yuan, C. Zhi-Quan, P. Rui-Kun, W. Shao-Jie et al., Vacancy-induced ferromagnetism in SnO2 nanocrystals: a positron annihilation study. Chin. Phys. Lett. 30, 27804 (2013)

    Article  Google Scholar 

  24. N.H. Hong, N. Poirot, J. Sakai, Ferromagnetism observed in pristine SnO2 thin films. Phys. Rev. B 77, 33205 (2008)

    Article  Google Scholar 

  25. S. Mehraj, M.S. Ansari, Rutile-type Co doped SnO2 diluted magnetic semiconductor nanoparticles: structural, dielectric and ferromagnetic behavior. Phys. B Phys. Condens. Matter. 430, 106–113 (2013)

    Article  CAS  Google Scholar 

  26. R. Khan, Zulfiqar, S. Fashu, M.U. Rahman, Effects of Ni co-doping concentrations on dielectric and magnetic properties of (Co, Ni) co-doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 27, 7725–7730 (2016)

    Article  CAS  Google Scholar 

  27. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Structural optical correlated properties of SnO2/Al2O3 core@ shell heterostructure. J. Mol. Struct. 1115, 156–160 (2016)

    Article  CAS  Google Scholar 

  28. Z.K. Heiba, N.G. Imam, M.B. Mohamed, Coexistence of cubic and hexagonal phases of Cd doped ZnS at different annealing temperatures. Mater. Sci. Semicond. Proc. 34, 39–44 (2015)

    Article  CAS  Google Scholar 

  29. A. Sweyllam, K. Alfaramawi, S. Abboudy, N.G. Imam, H.A. Motaweh, Growth and current–voltage characterization of ZnTe/CdTe heterojunctions. Thin Solid Films 519(2), 681–685 (2010)

    Article  CAS  Google Scholar 

  30. K. Alfaramawi, A. Sweyllam, S. Abboudy, N.G. Imam, H.A. Motaweh, Interface states-induced-change in the energy band diagram and capacitance–voltage characteristics of isotype ZnTe/CdTe heterojunctions. Int. J. Mod. Phys. B 24(24), 4717–4725 (2010)

    Article  CAS  Google Scholar 

  31. P. Senthilkumar, G. Vasuki, R. Ramesh Babu, S. Raja, Influence of Cd doping on the structural, optical and morphological properties of SnO2 thin films. AIP Conf. Proc. 2220(1), 090024 (2020)

    Article  CAS  Google Scholar 

  32. N.T. Tayade, S. Dhawankar, P.R. Arjuwadkar, Perspective of distortion and vulnerability in structure by using the cds-zns composite approach in rietveld refinement (2017)

  33. H.S. Oh, H.N. Nong, T. Reier, M. Gliech, P. Strasser, Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 6, 3321–3328 (2015)

    Article  CAS  Google Scholar 

  34. D. Sharma, S. Tripathi, R.S. Panwar, G. Dhillon, A.K. Bhatia, D. Vashisht, S.K. Mehta, N. Kumar, Crystal chemistry and physicochemical investigation of aliovalent substituted SnO2 nanoparticles. Vacuum 184, 109925 (2021)

    Article  CAS  Google Scholar 

  35. M.A. Gondal, Q.A. Drmosh, T.A. Saleh, Preparation and characterization of SnO2 nanoparticles using high power pulsed laser. Appl. Surf. Sci. 256, 7067–7070 (2010)

    Article  CAS  Google Scholar 

  36. B. Babu, C.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, J. Park, Effect of cobalt concentration on morphology of Co-doped SnO2 nanostructures synthesized by solution combustion method. J. Mater. Sci. Mater. Electron. 27, 5197–5203 (2016)

    Article  CAS  Google Scholar 

  37. P. Chetri, B. Saikia, A. Choudhury, Structural and optical properties of Cu doped SnO2 nanoparticles: an experimental and density functional study. J. Appl. Phys. 113, 233514 (2013)

    Article  Google Scholar 

  38. M. Parthibavarman, K. Vallalperuman, S. Sathishkumar, M. Durairaj, K. Thavamani, A novel microwave synthesis of nanocrystalline SnO2 and its structural optical and dielectric properties. J. Mater. Sci. Mater. Electron. 25, 730–735 (2014)

    Article  CAS  Google Scholar 

  39. D. Sharma, R. Jha, Transition metal (Co, Mn) co-doped ZnO nanoparticles: Effect on structural and optical properties. J. Alloys Compd. 698, 532–538 (2017)

    Article  CAS  Google Scholar 

  40. X. Zhang, H. Yang, Structural characterization and gas sensing property of Cd-doped SnO2 nanocrystallites synthesized by mechanochemical reaction. Sens. Actuators B: Chem. 173, 127–132 (2012)

    Article  CAS  Google Scholar 

  41. P. Chetri, A. Choudhury, Investigation of optical properties of SnO2 nanoparticles. Phys. E: Low-Dimens. Syst. Nanostruct. 47, 257–263 (2013)

    Article  CAS  Google Scholar 

  42. S. Gnanam, V. Rajendran, Preparation of Cd-doped SnO2 nanoparticles by sol–gel route and their optical properties. J. Sol-gel Sci. Technol. 56, 128–133 (2010)

    Article  CAS  Google Scholar 

  43. D. Sharma et al., In vitro and in silico molecular docking studies of Rheum emodi-derived diamagnetic SnO2 nanoparticles and their cytotoxic effects against breast cancer. New J Chem. 45, 1695–1711 (2021)

    Article  CAS  Google Scholar 

  44. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  45. V.B. Kamble, A.M. Umarji, Achieving selectivity from the synergistic effect of Cr and Pt activated SnO2 thin film gas sensors. Sen. Actuators B: Chem. 236, 208–217 (2016)

    Article  CAS  Google Scholar 

  46. P. Boguslawski, E.L. Briggs, J. Bernholc, Native defects in gallium nitride. Phys. Rev. B 51, 17255 (1995)

    Article  CAS  Google Scholar 

  47. P. Perlin, T. Suski, H. Teisseyre, Towards the identification of the dominant donor in GaN. Phys. Rev. Lett. 75, 296 (1995)

    Article  CAS  Google Scholar 

  48. X.S. Fang, C.H. Ye, L.D. Zhang, T. Xie, Twinning-mediated growth of Al2O3 nanobelts and their enhanced dielectric responses. Adv. Mater. 17, 1661 (2005)

    Article  CAS  Google Scholar 

  49. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems (Wiley, Hoboken, 1987).

    Google Scholar 

  50. J.G. Han, Z.Y. Zhu, S. Ray, A.K. Azad, W.L. Zhang, M.X. He, S.H. Li, Y.P. Zhao, Optical and dielectric properties of ZnO tetrapod structures at terahertz frequencies. Appl. Phys. Lett. 89, 031107 (2006)

    Article  Google Scholar 

  51. S.M. Zhou, Y.S. Feng, L.D. Zhang, A physical evaporation synthetic route to large-scale GaN nanowires and their dielectric properties Chem. Phys. Lett. 69, 610 (2003)

    Google Scholar 

  52. B. Song, G. Wang, J.K. Jian, M. Lei, H.Q. Bao, X.L. Chen, Synthesis of N-deficient GaN and its enhanced dielectric responses. J. Alloys Compd. 460, 31 (2008)

    Article  CAS  Google Scholar 

  53. F. Guo, S.F. Wang, M.K. Li, J. Zhou, D. Xu, D.R. Yuan, Photoluminescence properties of SnO2 nanoparticles synthesized by sol−gel method. J. Phys. Chem. B 108, 8119 (2004)

    Article  Google Scholar 

  54. K. Dutta, S.K. De, Optical and diode like current–voltage characteristics of SnO2–polypyrrole nanocomposites. J. Phys. D: Appl. Phys. 40, 734 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Aseem Vashisht is thankful to Chairman, Department of Physics, Panjab University, Chandigarh, India, for providing facilities to conduct research work. Naveen Kumar is thankful to the Director, Sophisticated Analytical Instrument Facility (SAIF), Chandigarh, India, for the characterization of the materials. Shalini Tripathi acknowledges the TEM facility at Center for Integrated Nanotechnology, CINT, an Office of Science User Facility operated for U.S. DOE, Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vashisht, A., Dhillon, G., Panwar, R.S. et al. Structurally enriched aliovalent Cd2+-doped SnO2 nanocrystals and their physicochemical investigations. J Mater Sci: Mater Electron 32, 16623–16633 (2021). https://doi.org/10.1007/s10854-021-06217-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06217-6

Navigation