Skip to main content
Log in

Crystal structure, infrared luminescence and magnetic properties of Tm3+-doped and Tm3+-, Dy3+-codoped BaY2Ge3O10 germanates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Ca(Ba)RE2Ge3O10 germanates are currently considered as a promising class of active optical media emitting in the visible and infrared spectral region. Herein, a new series of BaY2-x-yTmxDyyGe3O10 phosphors was synthesized using the solid-state reaction and characterized by X-ray diffraction, scanning electron microscopy, diffuse reflectance and luminescence spectroscopy. All the studied compounds crystallize in the monoclinic system, space group P21/m, Z = 2. Under 808 nm excitation, BaY2-xTmxGe3O10 germanates demonstrate a broad emission in 1.3–2.2 µm range owing to a series of cascade 3H4 → 3F4 and 3F4 → 3H6 transitions in Tm3+ ions. The BaY2-xTmxGe3O10 phosphors exhibit a high thermal stability over a wide temperature range and belong to promising infrared luminescence materials. The intensity of these emission bands decreases with an increase in the dysprosium content in the BaY1.97-yTm0.03DyyGe3O10 germanates. The magnetic properties measurements have been also carried out since Dy3+ ions exhibit a large magnetic anisotropy and non-collinearity of the magnetization easy axes. The magnetization curve of Tm3+-doped BaY2Ge3O10 shows the effects of saturation typical of paramagnetics, while the magnetization of germanates doped with Dy3+ ions occurs with hysteresis which is observed for single-ion magnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.S.R. Raju, J.Y. Park, H.C. Jung, E. Pavitra, B.K. Moon, J.H. Jeong, J.S. Yu, J.H. Kim, H. Choi, Blue and green emissions with high color purity from nanocrystalline Ca2Gd8Si6O26: Ln (Ln = Tm or Er) phosphors. J. Alloys Compd. 509, 7537 (2011)

    Article  Google Scholar 

  2. J. Liao, B. Qiu, H. Wen, J. Chen, W. You, L. Liu, Synthesis process and luminescence properties of Tm3+ in AWO4 (A = Ca, Sr, Ba) blue phosphors. J. Alloys Compd. 487, 758 (2009)

    Article  CAS  Google Scholar 

  3. N. Kucuk, U.H. Kaynar, S. Akca, Y. Alajlani, L. Yin, Y. Wang, J. Garcia Guinea, K. Bulcar, T. Dogan, Y. Karabulut, M. Ayvacikli, A. Canimoglu, M. Topaksu, N. Can, Enhancing the blue luminescence behaviour of the Li co-doped novel phosphor ZnB2O4:Tm3+. J. Alloys Compd. 838, 155587 (2020)

    Article  CAS  Google Scholar 

  4. Y.X. Cao, X. Ding, Y.H. Wang, A single-phase phosphor NaLa9(GeO4)6O2: Tm3+, Dy3+ for near ultraviolet white LED and field-emission display. Am. Ceram. Soc. 99, 3696 (2016)

    Article  CAS  Google Scholar 

  5. J. Zhou, Z. Xia, Luminescence properties and energy transfer studies of a color tunable BaY2Si3O10:Tm3+, Dy3+ phosphor. Opt. Mater. 53, 116 (2016)

    Article  CAS  Google Scholar 

  6. H. Patham, K. Sk, L.K. Hussain, J.SYu. Bharat, Near-ultraviolet excited Tm3+ and Dy3+ ions co-doped barium lanthanum silica oxide phosphors for white-light applications. J. Alloys Compd. 78, 846 (2019)

    Article  Google Scholar 

  7. X. Wu, W. Bai, O. Hai, Q. Ren, J. Zheng, Y. Ren, Tunable color of Tb3+/Eu3+/Tm3+-coactivated K3La(PO4)2 via energy transfer: a single-phase white-emitting phosphor. Opt. Laser Technol. 155, 176 (2019)

    Article  Google Scholar 

  8. Y. Liu, J. Wang, X. Liu, H. Zhang, H. Liu, Energy transfer and luminescence properties of BaSr2Gd1-xMx(PO4)3 (M = Dy, Tm, Eu) phosphors for warm white UV LEDs. Opt. Mater. 95, 109 (2019)

    Article  Google Scholar 

  9. H. Cankaya, A. Tolga Gorgulu, A. Kurt, A. Speghini, M. Bettinelli, A. Sennaroglu, Comparative spectroscopic investigation of Tm3+: tellurite glasses for 2-µm lasing applications. Appl. Sci. 8, 333 (2018)

    Article  Google Scholar 

  10. D.C. Yu, R. Martín-Rodríguez, Q.Y. Zhang, A. Meijerink, F.T. Rabouw, Multi-photon quantum cutting in Gd2O2S:Tm3+ to enhance the photo-response of solar cells. Light: Sci Appl. 4, e344 (2015)

    Article  CAS  Google Scholar 

  11. S. Chandra, M.E. Wager, B. Clayton, A.G. Geiser, T.H. Allik, J.L. Ahl, C.R. Miller, P.A. Budni, P.A. Ketteridge, K.G. Lanier, E.P. Chicklis, J.A. Hutchinson, W.W. Hovis, 2-mikron pumped 8–12 micron OPO source for remote sensing. Proc. SPIE. 4036, 200 (2000)

    Article  CAS  Google Scholar 

  12. R. Thapa, D. Rhonehouse, D. Nguyen, Z. Yao, J. Zong, A. Chavez-Pirson, Ultra-wide mid-IR supercontinuum generation in W-type tellurite fiber pumped by 2 micron ultrashot laser, Frontiers in Optics. FW4D.2 (2012) https://doi.org/https://doi.org/10.1364/FIO.2012.FW4D.2.

  13. S.W. Henderson, P.J.M. Suni, C.P. Hale, S.M. Hannon, J.R. Magee, D.L. Bruns, E.H. Yuen, Coherent laser radar at 2 μm using solid-state lasers. IEEE Trans. Geo-Sci. Remote Sens. 31, 4 (1993)

    Article  Google Scholar 

  14. S. Tanabe, Properties of Tm3+-doped tellurite glasses for 1.4-μm amplifier. Proc. SPIE. 85, 4282 (2001)

    Google Scholar 

  15. L.D. da Vila, L. Gomes, L.V.G. Tarelho, Dynamics of Tm–Ho energy transfer and deactivation of the 3F4 low level of thulium in fluorozirconate glasses. J. Appl. Phys. 95, 5451 (2004)

    Article  Google Scholar 

  16. H. Guo, L. Liu, Y. Wang, C. Hou, W. Li, M. Lu, K. Zou, B. Peng, Host dependence of spectroscopic properties of Dy3+- doped and Dy3+, Tm3+-codoped Ge-Ga-S-CdI2 chalcohalide glasses. Opt. Express 17, 15350 (2009)

    Article  CAS  Google Scholar 

  17. S. Yu, D. Tu, W. Lian, J. Xu, X. Chen, Lanthanide-doped near-infrared II luminescent nanoprobes for bioapplications. Sci. China Mater. 62, 1071 (2019)

    Article  CAS  Google Scholar 

  18. X. Chen, G.J. Salamo, S. Li, J. Wang, Y. Guo, Y. Gao, L. He, H. Ma, J. Tao, P. Sun, W. Lin, Q. Liu, Two-photon, three-photon, and four-photon excellent near-infrared quantum cutting luminescence of Tm3+ ion activator emerged in Tm3+:YNbO4 powder phosphor one material simultaneously. Phys. B 479, 159 (2015)

    Article  CAS  Google Scholar 

  19. X. Chen, G.J. Salamo, G. Yang, Y. Li, X. Ding, Y. Gao, Q. Liu, J. Guo, Multiphoton near-infrared quantum cutting luminescence phenomena of Tm3+ ion in (Y1-xTmx)3Al5O12 powder phosphor. Opt. Express 21, A829 (2013)

    Article  Google Scholar 

  20. O.A. Lipina, Y.V. Baklanova, L.L. Surat, M.A. Melkozerova, AYu. Chufarov, A.P. Tyutyunnik, V.G. Zubkov, Structural and optical characterization of Tm3+-doped apatite related NaLa9(GeO4)6O2 phosphors. Ceram. Int. 46, 26416 (2020)

    Article  CAS  Google Scholar 

  21. Ya.V. Baklanova, O.A. Lipina, L.L. Surat, AYu. Chufarov, A.P. Tyutyunnik, V.G. Zubkov, Luminescence properties of Sr2La8-xTmx(GeO4)6O2 apatites (x = 0.1–1.0) in visible and short-wave IR spectral ranges. Phys. Solid State 62, 1407 (2020)

    Article  Google Scholar 

  22. I. Kebaïli, M. Dammak, E. Cavalli, M. Bettinelli, Energy levels and crystal-field analysis of Tm3+ in YAl(BO3)4 crystals. J. Lumin. 131, 2010 (2011)

    Article  Google Scholar 

  23. A.T. Gorgulu, H. Cankaya, A. Kurt, A. Speghini, M. Bettinelli, A. Sennaroglu, Spectroscopic characterization of Tm3+: TeO2–K2O–Nb2O5 glasses for 2-μm lasing applications. J. Lumin. 132, 110 (2012)

    Article  Google Scholar 

  24. C. Wang, Y. Tian, H. Li, Q. Liu, F. Huang, B. Li, J. Zhang, S. Xu, Mid-infrared photo-luminescence and energy transfer around 2.8 µm from Dy3+/Tm3+ co-doped tellurite glass. Infrared Phys. Technol. 85, 128 (2017)

    Article  CAS  Google Scholar 

  25. J. Tang, Y. Chen, Y. Lin, X. Gong, J. Huang, Z. Luo, Y. Huang, Spectroscopic properties of Ho3+ single-doped and Tm3+/Ho3+ co-doped LiLa(MoO4)2 crystals. J. Phys. D: Appl. Phys. 43, 495401 (2010)

    Article  Google Scholar 

  26. O.A. Lipina, L.L. Surat, AYu. Chufarov, A.P. Tyutyunnik, A.N. Enyashin, I.V. Baklanova, K.G. Belova, Y.V. Baklanova, V.G. Zubkov, Structural, electronic and optical studies of BaRE2Ge3O10 (RE = Y, Sc, Gd–Lu) germanates with a special focus on the [Ge3O10]8- geometry. CrystEngComm 21, 6491 (2019)

    Article  CAS  Google Scholar 

  27. O.A. Lipina, L.L. Surat, Y.V. Baklanova, L.Yu. Mironov, A.Yu. Chufarov, A.P. Tyutyunnik, V.G. Zubkov, Crystal structure, luminescence properties and thermal stability of BaY2-xEuxGe3O10 phosphors with high colour purity for blue-excited pc-LEDs. New J. Chem. 44, 16400 (2020)

    Article  CAS  Google Scholar 

  28. R. Vijayakumar, X.Y. Huang, Synthesis and photoluminescence properties of high-efficiency BaGd2Si3O10:Eu3+ red phosphors for WLEDs and display device applications. J. Mater. Sci.: Mater. Electron. 30, 4196 (2019)

    CAS  Google Scholar 

  29. M.N. Leuenberger, D. Loss, Quantum computing in molecular magnets. Nature 410, 789 (2001)

    Article  CAS  Google Scholar 

  30. N.F. Chilton, D. Collison, E.J.L. McInnes, R.E.P. Winpenny, A. Soncini, An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nat. Commun. 4, 3551 (2013)

    Article  Google Scholar 

  31. J.D. Rinehart, J.R. Long, Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078 (2011)

    Article  CAS  Google Scholar 

  32. R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro, Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 488, 357 (2012)

    Article  CAS  Google Scholar 

  33. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210 (2001)

    Article  CAS  Google Scholar 

  34. A.C. Larson, R.B. Von Dreele, General Structure Analysis System (GSAS) Report LAUR 86–748 (Los Alamos, NM, Los Alamos National Laboratory, 2004).

    Google Scholar 

  35. K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011)

    Article  CAS  Google Scholar 

  36. G. Li, Y. Wang, Photoluminescence properties of novel BaGd2Si3O10:RE2+/3+ (RE = Eu or Ce) phosphors with trichromatic emission for white LEDs. New J. Chem. 41, 9178 (2017)

    Article  CAS  Google Scholar 

  37. J. Liu, G. Li, H. Guo, D. Liu, P. Feng, Y. Wang, Design, synthesis and characterization of a novel bluish-green long-lasting phosphorescence phosphor BaLu2Si3O10:Eu2+, Nd3+. RSC Adv. 8, 10246 (2018)

    Article  CAS  Google Scholar 

  38. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976)

    Article  Google Scholar 

  39. M.F. Reid, Chapter 284 - Theory of rare-earth electronic structure and spectroscopy, Handb. Phys. Chem. Rare Earths 50, 47 (2016)

  40. J. Ren, T. Wagner, M. Bartos, M. Frumar, J. Oswald, M. Kinc, B. Frumarova, G. Chen, Intense near-infrared and midinfrared luminescence from the Dy3+-doped GeSe2–Ga2Se3–MI (M = K, Cs, Ag) chalcohalide glasses at 1.32, 1.73, and 2.67 µm. J. Appl. Phys. 109, 033105 (2011)

    Article  Google Scholar 

  41. L. Li, J. Bian, Z. Qing Jiao, S. Liu, C. Lin. Dai, GeS2–In2S3–CsI chalcogenide glasses doped with rare earth ions for near- and mid-IR luminescence. Sci. Rep. 6, 37577 (2016)

    Article  CAS  Google Scholar 

  42. G. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444 (1968)

    Article  CAS  Google Scholar 

  43. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836 (1953)

    Article  CAS  Google Scholar 

  44. D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063 (1954)

    Article  CAS  Google Scholar 

  45. L. Ozawa, P.M. Jaffe, The Mechanism of the emission color shift with activator concentration in Eu activated phosphors. J. Electrochem. Soc. 118, 1678 (1971)

    Article  CAS  Google Scholar 

  46. V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Color point tuning for (Sr, Ca, Ba)Si2O2N2:Eu2+ for white light LEDs. Chem. Mater. 21, 316 (2009)

    Article  CAS  Google Scholar 

  47. J. Li, J. Yan, D. Wen, W.U. Khan, J. Shi, M. Wu, Q. Sua, P.A. Tanner, Advanced red phosphors for white light-emitting diodes. J. Mater. Chem. C 4, 8611 (2016)

    Article  CAS  Google Scholar 

  48. Y. Tian, R. Xu, L. Hu, J. Zhang, Synthesis and infrared photoluminescence around 2.9 μm from Dy3+/Tm3+ codoped fluorophosphate glass. Mater. Lett. 69, 72 (2012)

    Article  CAS  Google Scholar 

  49. Y.-N. Guo, G.-F. Xu, Y. Guo, J. Tang, Relaxation dynamics of dysprosium (III) single molecule magnets. Dalton Trans. 40, 9953 (2011)

    Article  CAS  Google Scholar 

  50. P. Ma, F. Hu, Y. Huo, D. Zhang, C. Zhang, J. Niu, J. Wang, Magnetoluminescent bifunctional dysprosium-based phosphotungstates with synthesis and correlations between structures and properties. Cryst. Growth Des. 17, 1947 (2017)

    Article  CAS  Google Scholar 

  51. J. Liu, Y.-C. Chen, J.-J. Lai, Z.-H. Wu, L.-F. Wang, Q.-W. Li, G.-Z. Huang, J.-H. Jia, M.-L. Tong, Evolution of slow magnetic relaxation: from diamagnetic matrix Y(OH)CO3 to Dy0.06Y0.94(OH)CO3 with high spin reversal barrier and blocking temperature. Inorg. Chem. 55, 3145 (2016)

    Article  CAS  Google Scholar 

  52. J. Shi, D. Liu, L. Tong, X. Yang, H. Yang, Magnetic and photoluminescence properties of Fe3O4@SiO2@YP1−xVxO4:Dy3+ nanocomposites. J. Alloys Compd. 509, 10211 (2011)

    Article  CAS  Google Scholar 

  53. S. Titos-Padilla, J. Ruiz, J. Manuel Herrera, E.K. Brechin, W. Wersndorfer, F. Lloret, E. Colacio, Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation. Inorg. Chem. 52, 9620 (2013)

    Article  CAS  Google Scholar 

  54. S. Cardona-Serra, J.M. Clemente-Juan, E. Coronado, A. Gaita-Ariño, A. Camón, M. Evangelisti, F. Luis, M.J. Martínez-Pérez, J. Sesé, Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12– (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J. Am. Chem. Soc. 134, 14982 (2012)

    Article  CAS  Google Scholar 

  55. K. Suzuki, R. Sato, N. Mizuno, Reversible switching of single-molecule magnet behaviors by transformation of dinuclear dysprosium cores in polyoxometalates. Chem. Sci. 4, 596 (2013)

    Article  CAS  Google Scholar 

  56. P.E. Kazin, M.A. Zykin, V.V. Utochnikova, O.V. Magdysyuk, A.V. Vasiliev, Y.V. Zubavichus, W. Schnelle, C. Felser, M. Jansen, "Isolated" DyO+ embedded in a ceramic apatite matrix featuring single-molecule magnet behavior with a high energy barrier for magnetization relaxation. Angew. Chem. 56, 13416 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Grant No. 16–13–10111). The magnetic measurements were carried out in accordance with the state assignment for the Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences (No. AAAA-A19-119031890025-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya.V. Baklanova.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklanova, Y., Lipina, O.A., Chufarov, A.Y. et al. Crystal structure, infrared luminescence and magnetic properties of Tm3+-doped and Tm3+-, Dy3+-codoped BaY2Ge3O10 germanates. J Mater Sci: Mater Electron 32, 14976–14989 (2021). https://doi.org/10.1007/s10854-021-06051-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06051-w

Navigation