Skip to main content
Log in

Determination of surface morphology and electrical properties of MoO3 layer deposited on GaAs substrate with RF magnetron sputtering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the effects of the substrate temperature on the surface morphology of Molybdenum tri-oxide (MoO3) thin films and the electrically detailed examination of Au/MoO3/n–GaAs MOS heterojunction structure with the best homogeneity. MoO3 thin film was deposited both on soda–lime silicate glass as a thin film and n-type and (100) oriented GaAs substrates using RF magnetron sputtering method at substrate temperatures of room temperature, 100 °C, 200 °C and 300 °C. Surface morphology of the MoO3 thin films were investigated by utilizing atomic force microscopy (AFM) and scanning electron microscopy (SEM) measurements. AFM and SEM results have shown that MoO3 thin film with substrate temperature of 200 °C has the lowest surface roughness and the homogeneity of the film structures significantly enhances with increasing substrate temperature up to 200 °C. An inclement in roughness of thin film structure was detected at higher temperature than 200 °C due to the deterioration of homogeneity. Therefore, we primarily focused on the MoO3 thin films produced at the substrate temperature of 200 °C to examine the electrical properties of Au/MoO3/n–GaAs MOS heterojunction device. In order to determine the electrical properties, temperature dependent \(I-V\) measurements were performed in between 200 and 400 K by steps of 25 K. The fundamental electrical parameters such as saturation current (\({I}_{0}\)), ideality factor (\(n\)), and barrier height (\({\phi }_{0}\)) were calculated by analyzing the forward bias \(I{-}V\) curves at different temperatures. The series resistance (\({R}_{s}\)) values of the device were also determined using the plot of structure resistance (\({R}_{\text{i}}\)) vs applied bias voltage (\({V}_{i}\)), Thermionic Emission Theory and Cheung and Cheung methods. The \({R}_{s}\) value of Au/MoO3/n–GaAs MOS heterojunction device shows an abnormal behavior of up to 350 K, which is the critical temperature value and tends to increase with increasing temperature. Above the critical temperature value, it exhibits ideal behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Girotto, E. Voroshazi, D. Cheyns, P. Heremans, B.P. Rand, ACS Appl. Mater. Interfaces 3, 3244 (2011)

    Article  CAS  Google Scholar 

  2. A.L.F. Cauduro, R. Dos Reis, G. Chen, A.K. Schmid, C. Méthivier, H.G. Rubahn, L. Bossard-Giannesini, H. Cruguel, N. Witkowski, M. Madsen, ACS Appl. Mater. Interfaces 9, 7717 (2017)

    Article  Google Scholar 

  3. H. Simchi, B.E. McCandless, T. Meng, W.N. Shafarman, J. Alloys Compd. 617, 609 (2014)

    Article  CAS  Google Scholar 

  4. J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Adv. Mater. 24, 5408 (2012)

    Article  CAS  Google Scholar 

  5. G. Sanal Kumar, N. Illyaskutty, S. Suresh, R.S. Sreedharan, V.U. Nayar, V.P.M. Pillai, J. Alloys Compd. 698, 215 (2017)

    Article  CAS  Google Scholar 

  6. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, AIP Adv. 7, 085313 (2017)

    Article  Google Scholar 

  7. N.K. Elumalai, A. Saha, C. Vijila, R. Jose, Z. Jie, S. Ramakrishna, Phys. Chem. Chem. Phys. 15, 6831 (2013)

    Article  CAS  Google Scholar 

  8. E.M. Sanehira, B.J. Tremolet de Villers, P. Schulz, M.O. Reese, S. Ferrere, K. Zhu, L.Y. Lin, J.J. Berry, J.M. Luther, ACS Energy Lett. 1, 38 (2016)

    Article  CAS  Google Scholar 

  9. C. Wang, I. Irfan, X. Liu, Y. Gao, J. Vac. Sci. Technol. B 32, 053402 (2014)

    Article  Google Scholar 

  10. M.C. Gwinner, R. Di Pietro, Y. Vaynzof, K.J. Greenberg, P.K.H. Ho, R.H. Friend, H. Sirringhaus, Adv. Funct. Mater. 21, 1432 (2011)

    Article  CAS  Google Scholar 

  11. M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sens. Actuators B Chem. 145, 13 (2010)

    Article  CAS  Google Scholar 

  12. E. Comini, L. Yubao, Y. Brando, G. Sberveglieri, Chem. Phys. Lett. 407, 368 (2005)

    Article  CAS  Google Scholar 

  13. A.A. Bessonov, M.N. Kirikova, D.I. Petukhov, M. Allen, T. Ryhänen, M.J.A. Bailey, Nat. Mater. 14, 199 (2015)

    Article  CAS  Google Scholar 

  14. W. Chen, H. Zhang, Y. Wang, Z. Ma, Z. Li, Electrochim. Acta 144, 369 (2014)

    Article  CAS  Google Scholar 

  15. K. Zhu, X. Wang, J. Liu, S. Li, H. Wang, L. Yang, S. Liu, T. Xie, A.C.S. Sustain, Chem. Eng. 5, 8025 (2017)

    CAS  Google Scholar 

  16. K. Koike, R. Wada, S. Yagi, Y. Harada, S. Sasa, and M. Yano, Jpn. J. Appl. Phys. 53, 05FJ02 (2014).

  17. S. Balendhran, J. Deng, J.Z. Ou, S. Walia, J. Scott, J. Tang, K.L. Wang, M.R. Field, S. Russo, S. Zhuiykov, M.S. Strano, N. Medhekar, S. Sriram, M. Bhaskaran, K. Kalantar-Zadeh, Adv. Mater. 25, 109 (2013)

    Article  CAS  Google Scholar 

  18. K. Kalantar-Zadeh, J. Tang, M. Wang, K.L. Wang, A. Shailos, K. Galatsis, R. Kojima, V. Strong, A. Lech, W. Wlodarski, R.B. Kaner, Nanoscale 2, 429 (2010)

    Article  CAS  Google Scholar 

  19. M. Itoh, K. Hayakawa, S. Oishi, J. Phys. Condens. Matter 13, 6853 (2001)

    Article  CAS  Google Scholar 

  20. C. Julien, A. Khelfa, O.M. Hussain, J. Cryst. Growth 156, 235 (1995)

    Article  CAS  Google Scholar 

  21. W.C. Chang, X. Qi, J.C. Kuo, S.C. Lee, S.K. Ng, D. Chen, CrystEngComm 13, 5125 (2011)

    Article  CAS  Google Scholar 

  22. C.V. Ramana, V.V. Atuchin, V.G. Kesler, V.A. Kochubey, L.D. Pokrovsky, V. Shutthanandan, U. Becker, R.C. Ewing, Appl. Surf. Sci. 253, 5368 (2007)

    Article  CAS  Google Scholar 

  23. H. Ohtsuka, Y. Sakurai, Jpn. J. Appl. Phys. 40, 4680 (2001)

    Article  CAS  Google Scholar 

  24. J.Y. Zou, G.L. Schrader, Thin Solid Films 324, 52 (1998)

    Article  CAS  Google Scholar 

  25. J. Okumu, F. Koerfer, C. Salinga, M. Wuttig, J. Appl. Phys. 95, 7632 (2004)

    Article  CAS  Google Scholar 

  26. M.A. Camacho-López, L. Escobar-Alarcón, E. Haro-Poniatowski, Appl. Phys. A Mater. Sci. Process. 78, 59 (2004)

    Article  Google Scholar 

  27. J. Torres, J.E. Alfonso, L.D. López-Carreño, Phys. Status Solidi C Conf. 2, 3726 (2005)

    Article  CAS  Google Scholar 

  28. A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, B. Bouchikhi, Thin Solid Films 304, 39 (1997)

    Article  CAS  Google Scholar 

  29. K. Hosono, I. Matsubara, N. Murayama, S. Woosuck, N. Izu, Chem. Mater. 17, 349 (2005)

    Article  CAS  Google Scholar 

  30. X. Liu, S. Yi, C. Wang, C. Wang, Y. Gao, J. Appl. Phys. 115, 163508 (2014)

    Article  Google Scholar 

  31. D. Di Yao, J.Z. Ou, K. Latham, S. Zhuiykov, A.P. O’Mullane, K. Kalantar-Zadeh, Cryst. Growth Des. 12, 1865 (2012)

    Article  CAS  Google Scholar 

  32. T.M. McEvoy, K.J. Stevenson, J.T. Hupp, X. Dang, Langmuir 19, 4316 (2003)

    Article  CAS  Google Scholar 

  33. P.R. Patil, P.S. Patil, Thin Solid Films 382, 13 (2001)

    Article  CAS  Google Scholar 

  34. E. Çokduygulular, Ç. Çetinkaya, Y. Yalçın, B. Kınacı, J. Mater. Sci. Mater. Electron. 31, 13646 (2020)

    Article  Google Scholar 

  35. F. Güzelçimen, B. Tanören, Ç. Çetinkaya, M.D. Kaya, H.İ Efkere, Y. Özen, D. Bingöl, M. Sirkeci, B. Kınacı, M.B. Ünlü, S. Özçelik, Vacuum 182, 109766 (2020)

    Article  Google Scholar 

  36. B. Kınacı, Ç. Çetinkaya, E. Çokduygulular, H.İ Efkere, N.A. Sönmez, S. Özçelik, J. Mater. Sci. Mater. Electron. 31, 8718 (2020)

    Article  Google Scholar 

  37. X. Fan, G. Fang, P. Qin, N. Sun, N. Liu, Q. Zheng, F. Cheng, L. Yuan, X. Zhao, J. Phys. D. Appl. Phys. 44, 045101 (2011)

    Article  Google Scholar 

  38. K. V. Alex, A. R. Jayakrishnan, S. AjeeshKumar, A. S. Ibrahim, K. Kamakshi, J. P. B. Silva, K. C. Sekhar, and M. J. M. Gomes, Mater. Res. Express 6, 066421 (2019).

  39. J. Geissbühler, J. Werner, S. Martin De Nicolas, L. Barraud, A. Hessler-Wyser, M. Despeisse, S. Nicolay, A. Tomasi, B. Niesen, S. De Wolf, C. Ballif, Appl. Phys. Lett. 107, 081601 (2015)

    Article  Google Scholar 

  40. C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, A. Javey, Nano Lett. 14, 967 (2014)

    Article  CAS  Google Scholar 

  41. J. Bullock, A. Cuevas, T. Allen, C. Battaglia, Appl. Phys. Lett. 105, 232109 (2014)

    Article  Google Scholar 

  42. L.R. Weisberg, J. Appl. Phys. 39, 6096 (1968)

    Article  CAS  Google Scholar 

  43. K. Tomioka, J. Motohisa, S. Hara, K. Hiruma, T. Fukui, Nano Lett. 10, 1639 (2010)

    Article  CAS  Google Scholar 

  44. A. Sarkar, T. Ashraf, W. Grafeneder, R. Koch, J. Phys. Condens. Matter 30, 155001 (2018)

    Article  Google Scholar 

  45. T. Ashraf, A. Sarkar, W. Grafeneder, R. Koch, J. Appl. Phys. 124, 215301 (2018)

    Article  Google Scholar 

  46. B. Kınacı, S. ŞebnemÇetin, A. Bengi, S. Özçelik, Mater. Sci. Semicond. Process. 15, 531 (2012)

    Article  Google Scholar 

  47. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, S. Altindal, I. Uslu, Compos. Part B Eng. 98, 260 (2016)

    Article  Google Scholar 

  48. H.U. Tecimer, M.A. Alper, H. Tecimer, S.O. Tan, S. Altındal, Polym. Bull. 75, 4257 (2018)

    Article  CAS  Google Scholar 

  49. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, İ Orak, Ş Altındal, Compos. Part B Eng. 113, 14 (2017)

    Article  Google Scholar 

  50. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, İ Orak, Ş Altındal, J. Mater. Sci. Mater. Electron. 27, 8340 (2016)

    Article  CAS  Google Scholar 

  51. Y.P. Song, R.L. Van Meirhaeghe, W.H. Laflère, F. Cardon, Solid State Electron. 29, 633 (1986)

    Article  CAS  Google Scholar 

  52. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  CAS  Google Scholar 

  53. A. BuyukbasUlusan, A. Tataroglu, Indian J. Phys. 92, 1397 (2018)

    Article  CAS  Google Scholar 

  54. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Gazi University Photonics Research Center and the Directorate of Presidential Strategy and Budget of Turkey (Project No: 2019K12-92587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barış Kınacı.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çetinkaya, Ç., Çokduygulular, E., Özen, Y. et al. Determination of surface morphology and electrical properties of MoO3 layer deposited on GaAs substrate with RF magnetron sputtering. J Mater Sci: Mater Electron 32, 12330–12339 (2021). https://doi.org/10.1007/s10854-021-05863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05863-0

Navigation