Skip to main content
Log in

Structure, electromagnetic and dielectric properties of Ti-substituted lithium--zinc ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li0.35+0.5xZn0.3TixFe2..35–1.5xO4 (x = 0–0.4) ferrites waere prepared via a solid-state method. XRD refinement results show that diamagnetic Ti4+ ions enter octahedral lattice and replace Fe3+ at B site, resulting in the redistribution of B sublattice magnetic moment and ultimately reducing saturation magnetization. This mechanism is analyzed from the perspective of ion occupying distribution and substitution law. Globus relation is used to qualitatively analyze the law of initial permeability change with temperature and titanium content, and the main influencing factors are revealed. The variation of initial permeability and permeability loss with frequency and its causes have been explored, which are attributed to domain wall displacement, domain rotation and various resonance effects, especially domain wall resonance. The dominant characteristics and main influencing parameters of the three types of power losses in different frequency bands were studied quantitatively, and the transition law of the main mechanism of power losses with the change of frequency was explored. The variation of dielectric properties with frequency, titanium content and temperature was studied and analyzed utilizing polarization mechanism and Koops model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F. Xu, D. Zhang, G. Wang et al., Influence of LZN nanoparticles on microstructure and magnetic properties of Bi-substituted LiZnTi low-sintering temperature ferrites. Ceram. Int. 45, 1946–1949 (2019)

    Article  CAS  Google Scholar 

  2. V. Verma, S.P. Gairola, V. Pandey et al., High permeability and low power loss of Ti and Zn substitution lithium ferrite in high frequency range. Magn. Magn. Mater. 321, 3808–3812 (2009)

    Article  CAS  Google Scholar 

  3. A.V. Malyshev, E.N. Lysenko, V.A. Vlasov et al., Electromagnetic properties of Li0.4Fe2.4Zn0.2O4 ferrite sintered by continuous electron beam heating. Ceram. Int. 42, 16180–16183 (2016)

    Article  CAS  Google Scholar 

  4. E.N. Lysenko, A.L. Astafyev, V.A. Vlasov et al., Analysis of phase composition of LiZn and LiTi ferrites by XRD and thermomagnetometric analysis. Magn. Magn. Mater. 465, 457–4615 (2018)

    Article  CAS  Google Scholar 

  5. V.G. Harris, A. Geiler, Y.J. Chen et al., Recent advances in processing and applications of microwave ferrites. J. Magn. Magn. Mater. 321, 2035–2047 (2009)

    Article  CAS  Google Scholar 

  6. P. Baba, G. Argentina, W. Courtney et al., Fabrication and properties of microwave lithium ferrites. IEEE Trans. Magn. 8, 83–94 (1972)

    Article  CAS  Google Scholar 

  7. D. Ravinder, P.K. Raju, Composition dependence of the elastic moduli of mixed lithium-zinc ferrites. Phys. Status Solidi (A) 136, 351 (1993)

    Article  CAS  Google Scholar 

  8. P.V. Reddy, B. Ramesh, G. Reddy, Electrical and dielectric property of zinc substituted lithium ferrite prepared by sol-gel method. Phys. B Condens. Matter. 405, 1852–1856 (2010)

    Article  CAS  Google Scholar 

  9. M. Srivastava, A.K. Ojha, S. Chaubey et al., Influence of pH on structural morphology and magnetic properties of ordered phase Co-doped lithium ferrites nanoparticles synthesized by sol-gel method. Mater. Sci. Eng. B 175, 14–21 (2010)

    Article  CAS  Google Scholar 

  10. Z.X. Yue, J. Zhou, X.H. Wang et al., Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol-gel auto-combustion process. J. Eur. Ceram. Soc. 23, 189–193 (2003)

    Article  CAS  Google Scholar 

  11. N. Thomas, T. Shimna, P.V. Jithin et al., Comparative study of the structural and magnetic properties of alpha and beta phases of lithium ferrite nanoparticles synthesized by solution combustion method. J. Magn. Magn. Mater. 462, 136–143 (2018)

    Article  CAS  Google Scholar 

  12. V. Rathod, A.V. Anupama, V.M. Jali et al., Combustion synthesis, structure and magnetic properties of Li-Zn ferrite ceramic powders. Ceram. Int. 43, 14431–14440 (2017)

    Article  CAS  Google Scholar 

  13. V. Rathod, A.V. Anupama, R. Vijaya Kumar et al., Correlated vibrations of the tetrahedral and octahedral complexes and splitting of the absorption bands in FTIR spectra of Li-Zn ferrites. Vibrat. Spectrosc. 92, 267–272 (2017)

    Article  CAS  Google Scholar 

  14. A.V. Anupama, V. Rathod, V.M. Jali et al., Composition dependent elastic and thermal properties of Li-Zn ferrites. J. Alloy. Compd. 728, 1091–1100 (2017)

    Article  CAS  Google Scholar 

  15. A.V. Anupama, V. Kumaran, B. Sahoo, Magnetorheological fluids containing rod-shaped lithium–zinc ferrite particles: the steady-state shear response. Soft Matter 14, 5407 (2018)

    Article  CAS  Google Scholar 

  16. Y. Yang, H. Zhang, J. Li et al., Effects of Bi2O3-Nb2O5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrite ceramics. Ceram. Int. 44, 10545–10550 (2018)

    Article  CAS  Google Scholar 

  17. F. Xie, L. Jia, F. Xu et al., Improved sintering characteristics and gyromagnetic properties of low-temperature sintered Li0.42Zn0.27Ti0.11Mn0.1Fe2.1O4 ferrite ceramics modified with Bi2O3-ZnO-B2O3 glass additive. Ceram. Int. 44, 13122–13128 (2018)

    Article  CAS  Google Scholar 

  18. T.C. Zhou, H.W. Zhang, L. Jia et al., Enhanced ferromagnetic properties of low temperature sintering LiZnTi Ferrites with Li2O-B2O3-SiO2-CaO-Al2O3 glass addition. J. Alloys Compd. 620, 421–426 (2015)

    Article  CAS  Google Scholar 

  19. F. Xue, J. Huang, T. Li et al., Lowering the synthesis temperature of Y3Fe5O12 by surfactant assisted solid state reaction. J. Magn. Magn Mater. 446, 118–124 (2018)

    Article  CAS  Google Scholar 

  20. M.A. Gil, D.B. Paul, Study of the physical and magnetic properties of Li0.3Zn0.4−xCaxFe23O4 ferrite. J. Alloys. Compd. 496, 341–344 (2010)

    Article  Google Scholar 

  21. M.S. Ruiz, S.E. Jacobo, Electromagnetic properties of lithium zinc ferrites doped with aluminum. Phys. Rev. B. 407, 3274–3277 (2012)

    CAS  Google Scholar 

  22. S. Misra, Modified magnetic and dielectric properties in Gd3+-substituted lithium zinc ferrite nanocrystallites. Mater. Res. Bull. 91, 203–207 (2017)

    Article  CAS  Google Scholar 

  23. E.N. Lysenko, S.A. Ghyngazov, The influence of ZrO2 additive on sintering and microstructure of lithium and lithium-titanium-zinc ferrites. Ceram. Int. 45, 2736–2741 (2019)

    Article  CAS  Google Scholar 

  24. I. Soibam, Structural and initial permeability studies of Li-Zn-Co Ferrites. Integr. Ferroelectr. 117, 28–33 (2010)

    Article  CAS  Google Scholar 

  25. G.O. White, C.E. Patton, ChemInform abstract: magnetic properties of lithium ferrite microwave materials. J. Magn. Magn. Mater. 9, 299–317 (1978)

    Article  CAS  Google Scholar 

  26. Z.C. Xu, Magnetic anisotropy and Mssbauer spectra in disordered lithium-zinc ferrites. J. Appl. Phys. 93, 4746–4749 (2003)

    Article  CAS  Google Scholar 

  27. A. Globus, H. Pascard, V.J. Cagan et al., Improvement of the magnetic properties of Li-Zn ferrite by Bi3+ substitution. J. Phys. 38, 163–168 (1977)

    Article  Google Scholar 

  28. S. Chikazumi, Physics of Magnetism (Wiley, New York, 1964).

    Google Scholar 

  29. A.K. Singh, T.C. Goel, R.G. Mendiratta et al., Magnetic properties of Mn-substituted Ni-Zn ferrites. J. Appl. Phys. 92, 3872–3876 (2002)

    Article  CAS  Google Scholar 

  30. K. Ishino, Y. Narumiya, Development of magnetic ferrites: control and application of losses. Am. Ceram. Soc. Bull. 66, 1469–1474 (1987)

    CAS  Google Scholar 

  31. A.V. Anupama, M. Manjunatha, V. Rathod et al., 57Fe internal field nuclear magnetic resonance and Mössbauer spectroscopy study of Li-Zn ferrites. J. Magn. Reson. 286, 68–77 (2018)

    Article  CAS  Google Scholar 

  32. H.K. Choudhary, M. Manjunatha, R. Damle et al., Solvent dependent morphology and 59Co internal field NMR study of Co-aggregates synthesized by a wet chemical method. Phys. Chem. Chem. Phys. 20, 17739 (2018)

    Article  CAS  Google Scholar 

  33. A.M. Abdeen, Dielectric behaviour in Ni-Zn ferrites. J. Magn. Magn. Mater. 192, 121–129 (1999)

    Article  CAS  Google Scholar 

  34. S. Madolappa, A.V. Anupama, P.W. Jaschin et al., Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics. Bull. Mater. Sci. 39, 593–601 (2016)

    Article  CAS  Google Scholar 

  35. B.R. Thejashwini, V. Khopkar, R. Madhusudhana et al., Crystal growth and effect of defects on the dielectric properties of ammonium dihydrogen phosphate (ADP) single crystals. J. Mater. Sci. Mater. Electron. 31, 10548–10552 (2020)

    Article  CAS  Google Scholar 

  36. V. Khopkar, B. Sahoo, Low temperature dielectric properties and NTCR behavior of the BaFe0.5Nb0.5O3 double perovskite ceramic. Phys. Chem. Chem. Phys. 22, 2986 (2020)

    Article  CAS  Google Scholar 

  37. S. Matteppanavar, I. Shivaraja, S. Rayaprol et al., Evidence for room-temperature weak ferromagnetic and ferroelectric ordering in magnetoelectric Pb(Fe0.634W0.266Nb0.1)O3 ceramic. J. Supercond. Nov. Magn. 30, 1317–1325 (2017)

    Article  CAS  Google Scholar 

  38. S. Matteppanavar, S. Rayaprol, A.V. Anupama et al., On the room temperature ferromagnetic and ferroelectric properties of Pb(Fe1/2Nb1/2)O3. J. Supercond. Nov. Magn. 28, 2465–2472 (2015)

    Article  CAS  Google Scholar 

  39. S. Matteppanavar, S. Rayaprol, A.V. Anupama et al., Origin of room temperature weak-ferromagnetism in antiferromagnetic Pb(Fe2/3W1/3)O3 ceramic. Ceram. Int. 41, 11680–11686 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Key Research and Development Program of China (grant number: No.2018YFF01010701) and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Li.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Zhu, J. & Li, H. Structure, electromagnetic and dielectric properties of Ti-substituted lithium--zinc ferrite. J Mater Sci: Mater Electron 32, 8354–8365 (2021). https://doi.org/10.1007/s10854-021-05419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05419-2

Navigation