Skip to main content

Advertisement

Log in

Crystal structure and enhanced magneto-electric properties of cobalt-substituted nickel–zinc ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Ni0.7−xZn0.3CoxFe2O4 (x = 0, 0.05, 0.10, 0.15 and 0.20, NZCF) ferrites were successfully fabricated by solid-state reaction method. We have been more focused on the effects of cobalt-substituted NiZn ferrite on crystal structure, microstructure and magneto-electric properties. With gradual addition of cobalt content, since the smaller ionic radius and larger atomic weight of the cobalt, which leads to decrease lattice parameter (a) and enhance X-ray density (dx), respectively. The grain size (D) increases (4.86 ± 1.10 to 6.26 ± 1.67 μm). When x = 0.05, the initial permeability (μi) of NiZnCo ferrites reaches the maximum value. The saturation magnetization (Ms) is firstly decreased slightly from 78.96 to 77.96 emu/g when x ≤ 0.10, then increased to 83.14 emu/g (x = 0.15), ultimately decreased to 81.54 emu/g. Meanwhile, the coercivity (Hc) is dropped from 19.95 to 13.25 Oe when x ≤ 0.05, and stabilized at about 13.40 Oe when x > 0.05. From the dielectric spectrum, the real dielectric constant (ε′) exhibits typical relaxation-dispersion behavior with increasing frequency. The resistivity temperature spectrum also shows good performance: both dc resistivity (ρ) and activation energy (Eρ) increase with the Co substitution. Here, we have developed a NiZnCo ferrite when Co-substituted x = 0.05 with the highest permeability (μi, 123@10 kHz), higher saturation magnetization (Ms, 78.25 emu/g) and lowest coercivity (Hc, 13.25Oe), which is expected to be used in high-frequency capacitors and inductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Fujimori, H. Yoshimoto, T. Masumoto, T. Mitera, Anomalous eddy current loss and amorphous magnetic materials with low core loss. J. Appl. Phys. 52, 1893 (1981)

    Article  CAS  Google Scholar 

  2. Q. Chen, P. Du, W. Huang, L. Jin, W. Weng, G. Han, Ferrite with extraordinary electric and dielectric properties prepared from self-combustion technique. Appl. Phys. Lett. 90, 132907 (2007)

    Article  Google Scholar 

  3. A.V. Humbe, J.S. Kounsalye, M.V. Shisode, K.M. Jadhav, Rietveld refinement, morphology and superparamagnetism of nanocrystalline Ni0.70-xCuxZn0.30Fe2O4 spinel ferrite. Ceram. Int. 44, 5466–5472 (2017)

    Article  Google Scholar 

  4. Z. Yan, J. Luo, Effects of Ce-Zn co-substitution on structure, magnetic and microwave absorption properties of nickel ferrite nanoparticles. J. Alloys Compd. 695, 1185–1195 (2017)

    Article  CAS  Google Scholar 

  5. S.A. Saafan, T.M. Meaz, E.H. El-Ghazzawy, M.K. El-Nimr, M.M. Ayad, M. Bakr, AC and DC conductivity of NiZn ferrite nanoparticles in wet and dry conditions. J. Magn. Magn. Mater. 322, 2369–2374 (2010)

    Article  CAS  Google Scholar 

  6. L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. He, R.D. Guo, Z.Z. Yu, Structural, magnetic and electrical properties in Al-substituted NiZnCo ferrite prepared via the sol-gel auto-combustion method for LTCC technology. RSC Adv. 7, 39198–39203 (2017)

    Article  CAS  Google Scholar 

  7. L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. He, F.H. Wang, Effects of Ce substitution on the structural and electromagnetic properties of NiZn ferrite. J. Magn. Magn. Mater. 475, 1–4 (2019)

    Article  CAS  Google Scholar 

  8. P. Yang, Z.Q. Liu, H.B. Qi, Z.J. Peng, X.L. Fu, High-performance inductive couplers based on novel Ce3+ and Co2+ ions co-doped NiZn ferrites. Ceram. Int. 45, 13685–13691 (2019)

    Article  CAS  Google Scholar 

  9. B.P. Rao, O.F. Caltun, Microstructure and magnetic behavior of Ni–Zn–Co ferrites. J. Adv. Mater. 8, 995–997 (2006)

    CAS  Google Scholar 

  10. P.G. Bercoff, H.R. Bertorello, Localized canting effect in Zn substituted Ni ferrites. J. Magn. Magn. Mater. 213, 56–62 (2000)

    Article  CAS  Google Scholar 

  11. E. Rezlescu, L. Sachelarie, P.D. Sachelarie, N. Rezlescu, Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE. Trans. Magn. 36, 3962–3967 (2000)

    Article  CAS  Google Scholar 

  12. L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. Peng, Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders. J. Magn. Magn. Mater. 433, 98–103 (2017)

    Article  CAS  Google Scholar 

  13. D.F. Wan, X.L. Ma, The Physics of Magnetism (UESTC Press, Chengdu, 1994)

    Google Scholar 

  14. R. Kumar, H. Kumar, R.R. Singh, P.B. Barman, Variation in magnetic and structural properties of Co-doped Ni-Zn ferrite nanoparticles: a different aspect. J. Sol-Gel Sci. Technol. 78, 566–575 (2016)

    Article  CAS  Google Scholar 

  15. X.H. Wu, L.Z. Li, X.X. Zhong, R. Wang, X.Q. Tu, L. He, F.H. Wang, Effects of HfO2 dopant on the structure, magnetic and electrical properties of NiZnCo ferrites. Ceram. Int. 45, 10776–10781 (2019)

    Article  CAS  Google Scholar 

  16. M. Drofenik, A. Znidarsic, D. Makovec, Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J. Am. Ceram. Soc. 81, 2841–2848 (1998)

    Article  CAS  Google Scholar 

  17. Y.J. Huang, W.S. Li, Z.W. Lan, Magnetic Materials (UESTC Press, Chengdu, 1993)

    Google Scholar 

  18. F. Xu, H. Zhang, F. Xie, Y. Liao, Y. Li, J. Li, L. Jin, Y. Yang, G. Gan, G. Wang, Investigation of grain boundary diffusion and grain growth of Lithium Zinc Ferrites with low activation energy. J. Am. Ceram. Soc. 101, 5037–5045 (2018)

    Article  CAS  Google Scholar 

  19. P.J. Zagg, P.J. Valk, M.T. Rekveldt, A domain size effect in the magnetic hysteresis of NiZn-ferrites. Appl. Phys. Lett. 69, 2927–2929 (1996)

    Article  Google Scholar 

  20. Z.Q. Liu, Z.G. Peng, C.C. Lv, X.L. Fu, Doping effect of Sm3+ on magnetic and dielectric properties of Ni-Zn ferrites. Ceram. Int. 43, 1449–1454 (2017)

    Article  CAS  Google Scholar 

  21. K. Jalaiah, K.V. Babu, K.C. Mouli, P.S.V. Subba Rao, Effect on the structural, DC resistivity and magnetic properties of Zr and Cu co-Substituted Ni0.5Zn0.5Fe2O4 using sol-gel auto-combustion method. Phys. B 534, 125–133 (2018)

    Article  CAS  Google Scholar 

  22. M. Kaiser, Effect of rare earth elements on the structural, magnetic and electrical behavior of Ni-Zn-Cr nanoferrites. J. Alloys Compd. 719, 446–454 (2017)

    Article  CAS  Google Scholar 

  23. P. Thakur, R. Sharma, M. Kumar, S.C. Katyal, P.B. Barman, V. Sharma, P. Sharma, Structural, morphological, magnetic and optical study of co-precipitated Nd3+ doped Mn-Zn ferrite nanoparticles. J. Magn. Magn. Mater. 479, 317–325 (2019)

    Article  CAS  Google Scholar 

  24. M.A. Almessiere, Y. Slimani, S. Güner, M. Nawaz, A. Baykal, F. Aldakheel, S. Akhtar, I. Ercan, İ. Belenli, B. Ozçelik, Magnetic and structural characterization of Nb3+-substituted CoFe2O4 nanoparticles. Ceram. Int. 45, 8222–8232 (2019)

    Article  CAS  Google Scholar 

  25. W.W. Wang, C.W. Wang, J.J. Zheng, F.L. Shang, J.S. Dang, X. Zhao, Directional Diels-Alder cycloadditions of isoelectronic graphene and hexagonal boron nitride in oriented external electric fields: reaction axis rule vs polarization axis rule. Nanoscale 12, 15364–15370 (2020)

    Article  CAS  Google Scholar 

  26. B. Marfoua, J. Hong, Electric filed dependent valley polarization in 2D WSe2/CrGeTe3 heterostructure. Nanotechnology 31, 425702–425718 (2020)

    Article  CAS  Google Scholar 

  27. K.W. Lee, C.E. Lee, Strain-induced topological phase transition with inversion of the in-plane electric polarization in tiny-gap semiconductor SiGe monolayer. Sci. Rep. 10, 11300–11310 (2020)

    Article  Google Scholar 

  28. A. Lakshman, P.S.V.S. Rao, B.P. Rao, K.H. Rao, Electrical properties of In3+ and Cr3+ substituted magnesium–manganese ferrites. J. Phys. D 38, 673–678 (2005)

    Article  CAS  Google Scholar 

  29. U.V. Chhaya, R.G. Kulkarni, Metal-insulator type transition in aluminium and chromium co-substituted nickel ferrites. Mater. Lett. 39, 91–96 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported under the Project of Science and Technology Supporting Plan in Sichuan Province of China (2019YJ0354, 2019YJ0364), the National Natural Science Foundation of China Grant (51701025) and Research Found for Young Academic Leaders of CUIT Grant (J201710).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Zhong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XH., Tao, ZX., Li, LZ. et al. Crystal structure and enhanced magneto-electric properties of cobalt-substituted nickel–zinc ferrite. J Mater Sci: Mater Electron 31, 20277–20284 (2020). https://doi.org/10.1007/s10854-020-04547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04547-5

Navigation