Skip to main content
Log in

Electrochemical reaction mechanism for Bi2Te3-based anode material in highly durable all solid-state lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrochemical reaction mechanism of Bi2Te3 as negative electrode in all solid-state Li-ion battery (LIB) having LiBH4 as a solid electrolyte is established herein. To observe the effect of nanosized electrode material on the battery performance, Bi2Te3 nanorods were also used as anode material similar to the above battery setup. The galvanostatic discharge/charge profile suggested the first discharge and charge capacities as 533 mAhg−1 and 288 mAhg−1 for bulk Bi2Te3, which reduced to 219 mAhg−1 and 218 mAhg−1 , respectively, after 50 cycles. In case of nanorods, the first discharge and charge capacity were observed to be 489 mAhg−1 and 281 mAhg−1 , respectively, which reduced to 235 mAhg−1 and 233 mAhg−1 , respectively, after 50 cycles. The mechanism of lithiation/delithiation of Bi2Te3, as well as better performance of Bi2Te3 nanorods over its bulk counterpart, has been proposed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252–264 (2015)

    CAS  Google Scholar 

  2. A. Tripathi, W. Su, B. Hwang, Chem. Soc. Rev. 47, 736–851 (2018)

    CAS  Google Scholar 

  3. Y. Su, S. Li, D. Wu, F. Zhang, H. Liang, P. Gao, C. Cheng, X. Feng, ACS Nano 6, 8349–8356 (2012)

    CAS  Google Scholar 

  4. D. Liu, G. Cao, Energy Environ. Sci. 3, 1218–1237 (2010)

    CAS  Google Scholar 

  5. D. Lyu, B. Ren, S. Li, Acta Mech. 230, 701–727 (2019)

    Google Scholar 

  6. J.L. Tirado, Mater. Sci. Eng. 40, 103–136 (2003)

    Google Scholar 

  7. W.J. Zhang, J. Power Sources 196, 877–885 (2011)

    CAS  Google Scholar 

  8. J. Zhao, Z. Li, S. Yao, C. Hu, J. Wang, X. Feng, J. Mater. Sci. (2019). https://doi.org/10.1007/s00707-018-2327-8

    Article  Google Scholar 

  9. C. Villevieille, C.M. Ionica-Bousquet, B. Ducourant, J.C. Jumas, L. Monconduit, J. Power Sources 172, 388–394 (2007)

    CAS  Google Scholar 

  10. J. Xie, X.B. Zhao, G.S. Cao, M.J. Zhao, S.F. Su, J. Power Sources 140, 350–354 (2005)

    CAS  Google Scholar 

  11. C.M. Park, H.J. Sohn, Electrochim. Acta 55, 4987–4994 (2010)

    CAS  Google Scholar 

  12. W.X. Chen, J.Y. Lee, Z. Liu, Carbon 41, 959–966 (2003)

    CAS  Google Scholar 

  13. H. Kim, J. Cho, Chem. Mater. 39, 1679–1681 (2008)

    Google Scholar 

  14. F. Tu, J. Xie, G. Cao, X. Zhao, Materials 5, 1275–1284 (2012)

    CAS  Google Scholar 

  15. H. Tian, F. Xin, X. Wang, W. He, W. Han, J. Materiomics 1, 153–169 (2015)

    Google Scholar 

  16. J. Ni, X. Bi, Y. Jiang, L. Li, J. Lu, Nano Energy 34, 356–366 (2017)

    CAS  Google Scholar 

  17. X. Chen, H. Tang, Z. Huang, J. Zhou, X. Ren, K. Huang, X. Qi, J. Zhong, Ceram. Int. 43, 1437–1442 (2017)

    CAS  Google Scholar 

  18. J. Ma, J. Yang, L. Jiao, T. Wang, J. Lian, X. Duan, W. Zheng, Dalton Trans. 40, 10100–10108 (2011)

    CAS  Google Scholar 

  19. C.V. Subban, G. Rousse, R.N. Vannier, C. Laberty-Robert, P. Barboux, J.M. Tarascon, Solid State Ionics 283, 68–74 (2015)

    CAS  Google Scholar 

  20. A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W.V. Schalkwijk, Nat. Mater. 4, 148–159 (2005)

    Google Scholar 

  21. Y. Wang, H. Li, P. He, E. Hosono, H. Zhou, Nanoscale 2, 1294–1305 (2010)

    CAS  Google Scholar 

  22. R. Singh, P. Kumari, R.K. Rathore, K. Shinjato, T. Ichikawa, A.S. Verma, V.K. Saraswat, K. Awasthi, A. Jain, M. Kumar, Int. J. Hydrogen Energy 43, 21709–21714 (2018)

    CAS  Google Scholar 

  23. M. Matsuo, Y. Nakamori, S.-I. Orimo, Appl. Phys. Lett. 91, 224103 (2007)

    Google Scholar 

  24. K. Takahashi, K. Hattori, T. Yamazaki, K. Takada, M. Matsuo, S.I. Orimo, H. Maekawa, H. Takamura, J. Power Sources 226, 61–64 (2013)

    CAS  Google Scholar 

  25. P. Srivastava, K. Singh, J. Exp. Nanosci. 9, 1064–1074 (2014)

    CAS  Google Scholar 

  26. P. Srivastava, K. Singh, Bull. Mater. Sci. 36, 765–770 (2013)

    CAS  Google Scholar 

  27. H.J. Kim, M.-K. Han, H.-Y. Kim, W. Lee, S.-J. Kim, Bull. Korean Chem. Soc. 33, 3977–3980 (2012)

    CAS  Google Scholar 

  28. P. Kumari, P. Pal, K. Shinzato, K. Awasthi, T. Ichikawa, A. Jain, M. Kumar, Int. J. Hydrogen Energy 45, 16992–16999 (2020)

    CAS  Google Scholar 

  29. C.M. Park, S. Yoon, S.I. Lee, H.J. Sohn, J. Power Sources 186, 206–210 (2009)

    CAS  Google Scholar 

  30. J. Chen, Y. Zhu, N. Chen, X. Liu, Z. Sun, Z. Huang, F. Kang, Q. Gao, J. Jiang, L. Chen, J. Nanoparticle Res. 13, 6569–6578 (2011)

    CAS  Google Scholar 

  31. X.B. Zhao, X.H. Ji, Y.H. Zhang, G.S. Cao, J.P. Tu, Appl. Phys. A 80, 1567–1571 (2005)

    CAS  Google Scholar 

  32. D. McNulty, H. Geaney, E. Carroll, S. Garvey, A. Lonergan, C. O’Dwyer, Mater. Res. Express 4, 1–22 (2017)

    Google Scholar 

  33. B. Guo, X. Fang, B. Li, Y. Shi, C. Ouyang, Y. Hu, Z. Wang, G.D. Stucky, L. Chen, Chem. Mater. 24, 457−463 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DST, New Delhi (IFA-13/PH-84), SERB, New Delhi (ECR/2016/1780, ECR/2016/1888) and UGC-DAE CSR, Indore (CSR-IC-MSRSR-23/CRS-231/2017-18/1312, CSR-IC/CRS-73/2014-15/581).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ankur Jain or Manoj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3491 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Singh, R., Awasthi, K. et al. Electrochemical reaction mechanism for Bi2Te3-based anode material in highly durable all solid-state lithium-ion batteries. J Mater Sci: Mater Electron 31, 16429–16436 (2020). https://doi.org/10.1007/s10854-020-04195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04195-9

Navigation