Skip to main content
Log in

Microwave-assisted synthesis of W1−xMoxO3·0.33H2O compounds with enhanced band gap

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Optoelectronic solid solution powder materials with phase W1−xMoxO3·0.33H2O (where X = 0, 25, 50, 75 and 100 %), were synthetized using hydrothermal synthesis assisted by microwave heat radiation. The crystallographic phase was identified by X-ray diffraction and RAMAN techniques. The morphology was studied by means of electron microscopy techniques (SEM and TEM). Materials with X = 0, 25, 50 and 75 % were indexed with orthorhombic phase and material with X = 100 % was indexed with hexagonal phase (a combination of MoO3 and MoO3·0.55H2O phases). The band gap for each material (X = 0, 25, 50, 75 and 100 %) was determined using Kubelka–Munk theory and Tauc plots, being W0.25Mo0.75O3·0.33H2O (WM75m) the best compound with 1.90 eV. Because of the experimental results, it can be concluded that the band gap behavior is related with particle size and Mo percent content thus originating a decrease in parameter or axis “b” of the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Funct. Mater. 21, 2175 (2011)

    Article  Google Scholar 

  2. Y. Liu, Y. Jiao, H. Zhou, X. Yu, F. Qu, X. Wu, Nano-Micro Lett. 7(1), 12–16 (2015)

    Article  Google Scholar 

  3. I. Turyan, U.O. Krasovec, B. Orel, T. Saraidorov, R. Reisfeld, D. Mandler, Adv. Mater. 12, 330 (2000)

    Article  Google Scholar 

  4. M. Hepel, L.I. Dela-Moss, H. Redmond, J. Solid State Electrochem. 18(5), 1251–1260 (2014)

    Article  Google Scholar 

  5. V. Madhavi, P. Kondaiah, S. Uthanna, Mater. Sci. Forum 781, 95–106 (2014)

    Article  Google Scholar 

  6. K.R. Reyes-Gil, Z.D. Stephens, V. Stavila, D.B. Robinson, Mater. Interfaces 7(4), 2202–2213 (2015)

    Article  Google Scholar 

  7. K. Psifis, D. Louloudakis, D. Vernardou, E. Spanakis, G. Papadimitropoulos, D. Davazoglou et al. Phys. Status Solidi C 12(7), 1011–1015 (2015)

    Article  Google Scholar 

  8. M.U. Qadri, A.F. Diaz Diaz, M. Cittadini, A. Martucci, M.C. Pujol, J. Ferré-Borrull, E. Llobet, M. Aguiló, F. Díaz, J. Sol–Gel Sci. Technol. 26, 1097 (2002)

    Google Scholar 

  9. M. Epifani, E. Comini, R. Díaz, T. Andreu, A. Genç, J. Arbiol, P. Siciliano, G. Faglia, J.R. Morante, Appl. Mater. Interfaces 6(19), 16808–16816 (2014)

    Article  Google Scholar 

  10. A. H. Yan, F. Huang, H. Zhao, Q. C. Li, C. Y. Wang, J. Zhang, F. Chen, J. Ma, Mater. Res. Innov. 19(S5), S5- 1182–S5-1185 (2015)

    Article  Google Scholar 

  11. C. Malagu, M.C. Carotta, A. Cervi, V. Guidi, G. Martinelli, J. Appl. Phys. 101, 104310 (2007)

    Article  Google Scholar 

  12. N.M.A. Hadia, M.S. Alqahtani, S.H. Mohamed, Appl. Phys. A 119(4), 1261–1267 (2015)

    Article  Google Scholar 

  13. M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Nanoscale Res. Lett. 10, 54 (2015)

    Article  Google Scholar 

  14. W.L. Suchanek, R.E. Riman, Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006)

    Article  Google Scholar 

  15. J. Li, J. Huang, J. Wu, L. Cao, Q. Li, K. Yanagisawa, Cryst. Eng. Commun. 15, 7904–7913 (2013)

    Article  Google Scholar 

  16. N. Le Houx, G. Pourroy, F. Camerel, M. Comet, D. Spitzer, J. Phys. Chem. C 114, 155–161 (2010)

    Article  Google Scholar 

  17. F. Harb, B. Gerand, M. Figlarz, C. R. Acad. Sci. Paris 303, 789 (1986)

    Google Scholar 

  18. F. Hard, B. Gérand, G. Nowogrocki, M. Figlarz, Solid State Ion. 32(3), 84 (1989)

    Article  Google Scholar 

  19. A. Trovarelli, F. Zamar, J. Llorca, C. Leitenburg, G. Dolcetti, J.T. Kiss, J. Catal. 169, 490 (1997)

    Article  Google Scholar 

  20. S.T. Aruna, K.C. Patil, Nano-Struct. Mater. 10, 955 (1998)

    Article  Google Scholar 

  21. N. Sergent, J. Lamonier, A. Aboukais, Chem. Mater. 12, 3830 (2000)

    Article  Google Scholar 

  22. L. Zhou, J. Zhu, M. Yu, X. Huang, Z. Li, Y. Wang, C. Yu, J. Phys. Chem. C 114, 20947 (2010)

    Article  Google Scholar 

  23. P. Colomban, Ceram. Eng. Sci. Proc. 21, 143 (2000)

    Article  Google Scholar 

  24. E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Phys. Rev. B 64, 245407 (2001)

    Article  Google Scholar 

  25. A. Arzola-Rubio, J. Camarillo-Cisneros, L. Fuentes-Cobas, V. Collins-Martínez, L. De la Torre-Sáenz, F. Paraguay-Delgado, Superlattices Microstruct. 81, 175–184 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Centro Nacional de Supercomputo (CNS) of Instituto Potosino de Investigación Científica y Tecnológica (IPICyT) for computational resources, with CIMAV-NANOTECH and Rodrigo Domínguez for provided support. Thanks to the CEMISOL-SENER-Conacyt Project 207450/No P31. Thanks to E. Guerrero, C. Ornelas, W. Antunez and P. Piza for technical help at Laboratorio Nacional de Nanotecnología (Nanotech lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Collins-Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzola-Rubio, A., Camarillo-Cisneros, J., Collins-Martínez, V. et al. Microwave-assisted synthesis of W1−xMoxO3·0.33H2O compounds with enhanced band gap. J Mater Sci: Mater Electron 27, 6003–6009 (2016). https://doi.org/10.1007/s10854-016-4523-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4523-4

Keywords

Navigation