Skip to main content
Log in

Lattice polarization effects in electrochromic switching in WO3−x films studied by pulse-nanogravimetric technique

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The interactions of various types of cations with the tungsten trioxide lattice have been investigated to evaluate possible intercalation of these cations and the occurrence of lattice polarization leading to the near-surface structural lattice damage. The interactions of cations, such as the large monovalent cations (K+, Et4N+, CtMe3N+ cations), transition metal dications (Ni2+), heavy metal ions (Cd2+), and representative lanthanides (La3+) and actinides (Th4+), in competition with intercalation of H+ ions have been investigated using pulse-nanogravimetric technique. The effects of these cations in electrochromic processes of WO3 proceeding during cathodic reduction have been assessed. For all of the metal ions studied, a large increase in the apparent mass uptake (up to eightfold) in comparison to pure H+ ion ingress was observed upon the film coloration induced by a cathodic potential pulse. The experiments indicate that the apparent mass gains, although large, are insufficient to confirm predominant contribution of metal ions in the ion transport along the channels in WO3 lattice. The lower decoloration rate in the case of Ni2+ ions, in comparison to H+ and other transition metal cations (Cd2+), has been attributed to a slow dissociation of Ni2+ ions from lattice-bound oxygen atoms. For et4N+ cation, which is too large to enter channels in WO3, a dissociative reduction of the WO3 and severe lattice damage was observed. Among the metal ions investigated, only K+ ions have been found to cause a dissociative reduction of WO3 and near-surface lattice damage. Strong lattice polarization effects and irreversible binding have been found for La3+ and Th4+ cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hepel M, Redmond H, Dela I (2007) Electrochim Acta 52:3541–3549

    Article  CAS  Google Scholar 

  2. Krasnov YS, Volkov SV, Kolbasov GY (2006) J Non-Cryst Solids 352:3995–4002

    Article  CAS  Google Scholar 

  3. Bedja I, Hotchandani S, Kamat PV (1993) J Phys Chem 97:11064–11070

    Article  CAS  Google Scholar 

  4. Babinec SJ (1992) Sol Energ Mater Sol Cell 25:269–291

    Article  CAS  Google Scholar 

  5. Bachelor RA, Burdis MS, Siddle JR (1996) J Electrochem Soc 143:1050–1055

    Article  Google Scholar 

  6. Hepel M, Redmond H (2009) Cent Eur J Chem 7:234–245

    Article  CAS  Google Scholar 

  7. Granquist CG (1995) Handbook of inorganic electrochromic materials. Elsevier, New York

    Google Scholar 

  8. Santato C, Odziemkowski M, Ulmann M, Augustynski J (2001) J Am Chem Soc 123:10639–10649

    Article  CAS  Google Scholar 

  9. Shiyanovskaya I, Hepel M (1998) J Electrochem Soc 145:1023–1028

    Article  CAS  Google Scholar 

  10. Shiyanovskaya I, Hepel M (1998) J Electrochem Soc 145:3981–3985

    Article  CAS  Google Scholar 

  11. Shiyanovskaya I, Hepel M (1999) J Electrochem Soc 146:243–249

    Article  CAS  Google Scholar 

  12. Santato C, Ulmann M, Augustynski J (2001) J Phys Chem B 105:936–940

    Article  CAS  Google Scholar 

  13. Tacconi N, Chenthamarakshan CR, Rajeshwar K, Pauporte T, Lincot D (2003) Electrochem Commun 5:220–224

    Article  Google Scholar 

  14. Tacconi NR, Chenthamarakshan CR, Wouters KL, MacDonnell FM, Rajeshwar K (2004) J Electroanal Chem 566:249–256

    Article  Google Scholar 

  15. Kulesza PJ, Faulkner LR (1989) J Electroanal Chem 259:81–98

    Article  CAS  Google Scholar 

  16. Borzenko MI, Chojak M, Kulesza PJ, Tsirlina GA, Petrii OA (2003) Electrochim Acta 48:3797–3804

    Article  CAS  Google Scholar 

  17. Tze W, Borzenko MI, Tsirlina GA, Petrii OA (2002) Russ J Electrochem 38:1250–1255

    Article  Google Scholar 

  18. Timofeeva EV, Borzenko MI, Tsirlina GA, Astafev EA, Petrii OA (2004) J Solid State Electrochem 8:778–785

    Article  CAS  Google Scholar 

  19. Hepel M, Hazelton S (2005) Electrochim Acta 50:5278–5291

    Article  CAS  Google Scholar 

  20. Hepel M, Luo J (2001) Electrochim Acta 47:729–740

    Article  CAS  Google Scholar 

  21. Rajeshwar K, Ibanez J (1997) Environmental Electrochemistry. Academic, New York

    Google Scholar 

  22. Deb SK (1973) Philos Mag 27:801–822

    Article  CAS  Google Scholar 

  23. Delichere P, Falaras P, Froment M, Hugot-Le-Goff A, Agius B (1988) Thin Solid Films 161:35–46

    Article  CAS  Google Scholar 

  24. Dautremont-Smith WC, Green M, Kang KS (1977) Electrochim Acta 22:751–759

    Article  CAS  Google Scholar 

  25. Shen PK, Syed-Bokhari J, Tseung ACC (1991) J Electrochem Soc 138:2778–2783

    Article  CAS  Google Scholar 

  26. Gavrylyuk AI (1999) Electrochim Acta 44:3027–3037

    Article  Google Scholar 

  27. Wittingham MS (2004) Solid State Ionics 168:255–263

    Article  Google Scholar 

  28. Maruyama T, Arai S (1994) J Electrochem Soc 141:1021–1024

    Article  CAS  Google Scholar 

  29. Maruyama T, Kanagawa T (1994) J Electrochem Soc 141:2435–2438

    Article  CAS  Google Scholar 

  30. Mulenkamp EA (1997) J Electrochem Soc 144:1664–1671

    Article  Google Scholar 

  31. Ramana CV, Utsunomiya S, Ewing RC, Julien CM, Becker U (2006) J Phys Chem B 110:10430–10435

    Article  CAS  Google Scholar 

  32. Hepel M, Wickham D (2009) ECS Trans 19:11–23

    Article  CAS  Google Scholar 

  33. Baeck SH, Choi KS, Jaramillo TF, Stucky GD, McFarland EW (2003) Adv Mater 15:1269–1273

    Article  CAS  Google Scholar 

  34. Deepa M, Srivastava AK, Sood KN, Agnihotry SA (2006) Nanotechnology 17:2625–2630

    Article  CAS  Google Scholar 

  35. Hepel M (1999) In: Wieckowski A (ed) Interfacial electrochemistry theory, experiment and applications. Marcel Dekker, New York, pp 599–630

    Google Scholar 

  36. Hepel M, Cateforis E (2001) Electrochim Acta 46:3801–3815

    Article  CAS  Google Scholar 

  37. Hepel M, Dela I, Hepel T, Luo J, Zhong CJ (2007) Electrochim Acta 52:5529–5547

    Article  CAS  Google Scholar 

  38. Sauerbrey G (1959) Z Phys 155:206–222

    Article  CAS  Google Scholar 

  39. Bruckenstein S, Shay M (1985) Electrochim Acta 30:1295–1300

    Article  CAS  Google Scholar 

  40. Hepel M (2008) J Chem Educ 85:125–127

    Article  CAS  Google Scholar 

  41. Shiyanovskaya I, Hepel M (1998) J Electrochem Soc 145:1023–1028

    Article  CAS  Google Scholar 

  42. Shiyanovskaya I, Hepel M, Tewksburry E (2000) J New Mater Electrochem Syst 3:241–247

    CAS  Google Scholar 

  43. Lu Z, Kanan SM, Tripp CP (2002) J Mater Chem 12:983–989

    Article  CAS  Google Scholar 

  44. Hehre WJ, Radon L, Schleyer PR, Pople JA (1985) Ab-initio molecular orbital theory. Wiley, New York

    Google Scholar 

  45. Atkins PW, Friedman RS (2004) Molecular quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  46. Torresi SIC, Gorenstein A, Torresi RM, Vazquez MV (1991) J Electroanal Chem 318:131–144

    Article  Google Scholar 

  47. Scarminio J (2003) Sol Energ Mater Sol Cells 79:357–368

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation grants no. CCLI-0126402 and 0941364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Hepel.

Additional information

Dedicated to the memory of Professor Vladimir Sergeevich Bagotsky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hepel, M., Dela-Moss, L.I. & Redmond, H. Lattice polarization effects in electrochromic switching in WO3−x films studied by pulse-nanogravimetric technique. J Solid State Electrochem 18, 1251–1260 (2014). https://doi.org/10.1007/s10008-013-2219-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2219-8

Keywords

Navigation