Skip to main content
Log in

Recent advances and perspectives of molybdenum disulfide and molybdenum disulfide based nanocomposites for adsorption and photocatalytic degradation of organic dyes: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Environmental contamination is a major global concern. Organic dyes pose a significant threat as water pollutants, leading to the depletion of natural resources. Molybdenum disulfide (MoS2), a type of two-dimensional transition metal dichalcogenide, has gained considerable attention due to its impressive properties, such as stability, surface area, and tunable interlayer spacing. It has emerged as a promising material for both photocatalytic degradation and adsorption of harmful organic dyes. This article provides an overview of recent advancements in MoS2-based nanomaterials for the removal of organic dyes from solutions through adsorption and photocatalytic processes. The review delves into the fundamental properties of MoS2, explores various synthesis methods, and various modifications of the material to enhance its dye removal efficiency, and addresses potential challenges associated with its application in this field. Furthermore, the article discusses the prospects for improving MoS2-based materials for enhanced adsorption and photocatalytic degradation of organic dyes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712. https://doi.org/10.1038/nnano.2012.193

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Mak KF, Shan J (2016) Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10:216–226. https://doi.org/10.1038/nphoton.2015.282

    Article  ADS  CAS  Google Scholar 

  3. Lü T, Cao W, Liang H, Deng Y, Zhang Y, Zhu M, Ma W, Xiong R, Huang C (2022) Blow-spun nanofibrous membrane for simultaneous treatment of emulsified oil/water mixtures, dyes, and bacteria. Langmuir 38:15729–15739. https://doi.org/10.1021/acs.langmuir.2c02620

    Article  CAS  PubMed  Google Scholar 

  4. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res 52:3581–3599. https://doi.org/10.1021/ie303468t

    Article  CAS  Google Scholar 

  5. Wang Y, Li G, Li P, Hu J, Zhao Q (2016) Research progress of two-dimensional layered material molybdenum disulfide. Bandaoti Guangdian 37:461–466. https://doi.org/10.16818/j.issn1001-5868.2016.04.002

    Article  Google Scholar 

  6. Yuan Y-J, Lu H-W, Yu Z-T, Zou Z-G (2015) Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chemsuschem 8:4113–4127. https://doi.org/10.1002/cssc.201501203

    Article  CAS  PubMed  Google Scholar 

  7. Gotore O, Munodawafa A, Ramaraj R (2022) Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J Bioresourc Bioproducts 7(2):109–115. https://doi.org/10.1016/j.jobab.2021.12.001

    Article  CAS  Google Scholar 

  8. Casas N, Blánquez P, Gabarrell X, Vicent T, Caminal G, Sarrà M (2007) Degradation of orange G by laccase: fungal versus enzymatic process. Environ Technol 28:1103–1110. https://doi.org/10.1080/09593332808618874

    Article  CAS  PubMed  Google Scholar 

  9. Hu SW, Yang LW, Tian Y, Wei XL, Ding JW, Zhong JX, Chu PK (2014) Non-covalent doping of graphitic carbon nitride with ultrathin graphene oxide and molybdenum disulfide nanosheets: an effective binary heterojunction photocatalyst under visible light irradiation. J Colloid Interface Sci 431:42–49. https://doi.org/10.1016/j.jcis.2014.05.023

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Singh N, Jabbour G, Schwingenschlögl U (2012) Optical and photocatalytic properties of two-dimensional MoS2. Eur Phys J B 85:392. https://doi.org/10.1093/toxsci/kfs213

    Article  ADS  CAS  Google Scholar 

  11. Wang H, Yuan H, Sae Hong S, Li Y, Cui Y (2015) Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 44(9):2664–2680. https://doi.org/10.1039/C4CS00287C

    Article  CAS  PubMed  Google Scholar 

  12. Li Q, Alfrey A, Hu J et al (2023) Macroscopic transition metal dichalcogenides monolayers with uniformly high optical quality. Nat Commun 14:1837. https://doi.org/10.1038/s41467-023-37500-1

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bag S, Arachchige IU, Kanatzidis MG (2008) Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem 18(31):3628–3632. https://doi.org/10.1039/B804011G

    Article  CAS  Google Scholar 

  14. Zazpe R, Sopha H, Charvot J, Krumpolec R, Rodriguez-Pereira J, Michalička J, Mistrík J, Bača D, Motola M, Bureš F, Macak JM (2021) 2D MoTe2 nanosheets by atomic layer deposition: excellent photo-electrocatalytic properties. Appl Mater Today 23:101017. https://doi.org/10.1016/j.apmt.2021.101017

    Article  Google Scholar 

  15. Sivaranjani PR, Janani B, Thomas AM, Raju LL, Khan SS (2022) Recent development in MoS2-based nano-photocatalyst for the degradation of pharmaceutically active compounds. J Clean Prod 352:131506. https://doi.org/10.1016/j.jclepro.2022.131506

    Article  CAS  Google Scholar 

  16. Kumar B, Gandi SS, Gandi S, Parne SR, Lakavat M, Lakkimsetty NR, Gedda G (2022) Bio-Inspired C/N/TiO2 hybrid composite heterostructure: enhanced photocatalytic activity under visible light. J Nanotechnol 2022:1–9. https://doi.org/10.1155/2022/5816063

    Article  CAS  Google Scholar 

  17. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2020) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.04

    Article  Google Scholar 

  18. De Lima ROA, Bazo AP, Salvadori DMF, Rech CM, Oliveira DD, Umbuzeiro GD (2007) Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source. Mutat Res Genet Toxicol Environ Mutagen 626:53–60. https://doi.org/10.1016/j.mrgentox.2006.08.002

    Article  CAS  Google Scholar 

  19. Huang H, Chen L, Wang S, Kang P, Chen X, Guo Z, Huang X (2019) Electrochemical monitoring of persistent toxic substances using metal oxide and its composite nanomaterials: design, preparation, and application. Trends Anal Chem 119:115636. https://doi.org/10.1016/j.trac.2019.115636

    Article  CAS  Google Scholar 

  20. Alguacil FJ, López FA (2021) Organic dyes versus adsorption processing. Molecules 26:5440. https://doi.org/10.3390/molecules26185440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dutta S, Gupta B, Srivastava SK, Gupta AK (2021) Recent advances on the removal of dyes from wastewater using various adsorbents: a critical review. Mater Adv 2:4497–4531. https://doi.org/10.1039/D1MA00354B

    Article  CAS  Google Scholar 

  22. Collivignarelli MC, Abbà A, Carnevale Miino M, Damiani S (2019) Treatments for color removal from wastewater: state of the art. J Environ Manage 236:727–745. https://doi.org/10.1016/j.jenvman.2018.11.094

    Article  CAS  PubMed  Google Scholar 

  23. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C-photochem Rev 1:1–21. https://doi.org/10.1016/s1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  24. Zhang W, Xiao X, Li Y, Zeng X, Zheng L, Chen W (2016) Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study. Appl Surf Sci 389:496–506. https://doi.org/10.1016/j.apsusc.2016.07.154

    Article  ADS  CAS  Google Scholar 

  25. Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184. https://doi.org/10.1016/j.cis.2014.04.002

    Article  CAS  PubMed  Google Scholar 

  26. Bilal M, Ihsanullah I, Hassan Shah MU, Bhaskar Reddy AV, Aminabhavi TM (2022) Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J Environ Manage 321:115981. https://doi.org/10.1016/j.jenvman.2022.115981

    Article  CAS  PubMed  Google Scholar 

  27. Hussain S, Patil SA, Vikraman D, Mengal N, Liu H, Song W, An K-S, Jeong SH, Kim H-S, Jung J (2018) Large area growth of MoTe2 films as high-performance counter electrodes for dye-sensitized solar cells. Sci Rep 8(1):29. https://doi.org/10.1038/s41598-017-18067-6

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khan M, Hasan M, Bhatti K, Rizvi H, Wahab A, Rehman S, Afzal D, Nazneen A, Khan M, Nazir A (2020) Effect of Ni doping on the structural, optical, and photocatalytic activity of MoS2, prepared by hydrothermal method. Mater Res Express 7:7f. https://doi.org/10.1088/2053-1591/ab66f7

    Article  CAS  Google Scholar 

  29. Yang X, Li J, Liang T, Ma C, Zhang Y, Chen H, Hanagata N, Su H, Xu M (2014) Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 6:10126–10133. https://doi.org/10.1039/C4NR01965B

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Fan J, Li Y, Nguyen HN, Yao Y, Rodrigues DF (2015) Toxicity of exfoliated-MoS2 and annealed exfoliated-MoS2 towards planktonic cells, biofilms, and mammalian cells in the presence of electron donor. Environ Sci Nano 2:370–379. https://doi.org/10.1039/C5EN00031A

    Article  CAS  Google Scholar 

  31. Cheng A, Zhang H, Zhong W, Li Z, Tang Y, Li Z (2019) Enhanced electrochemical properties of single-layer MoS2 embedded in carbon nanofibers by electrospinning as anode materials for sodium-ion batteries. J Electroanal Chem 843:31–36. https://doi.org/10.1016/j.jelechem.2019.04.059

    Article  CAS  Google Scholar 

  32. Zhao P, Zheng J, Guo P, Jiang Z, Cao L, Wan Y (2017) Electronic and magnetic properties of Re-doped single-layer MoS2: a DFT study. Comput Mater Sci 128:287–293. https://doi.org/10.1016/j.commatsci.2016.11.030

    Article  CAS  Google Scholar 

  33. Gangwar R, Pandey D, Kancharlapalli S, Raychaudhuri D, Chakrabarti A, Banerjee A, Ghanti TK (2021) Ab initio study of adsorption of fission gas atoms Xe and Kr on MoS2 monolayer functionalized with 3d transition metals. J Phys Chem C 125:1493–1508. https://doi.org/10.1021/acs.jpcc.0c08888

    Article  CAS  Google Scholar 

  34. Arefi-Oskoui S, Khataee A, Ucun OK, Kobya M, Hanci TÖ, Arslan-Alaton I (2021) Toxicity evaluation of bulk and nanosheet MoS2 catalysts using battery bioassays. Chemosphere 268:128822. https://doi.org/10.1016/j.chemosphere.2020.128822

    Article  CAS  PubMed  Google Scholar 

  35. Rani A, Singh K, Patel AS, Chakraborti A, Kumar S, Ghosh K, Sharma P (2020) Visible light driven photocatalysis of organic dyes using SnO2 decorated MoS2 nanocomposites. Chem Phys Lett 738:136874. https://doi.org/10.1016/j.cplett.2019.136874

    Article  CAS  Google Scholar 

  36. Chang MJ, Cui WN, Liu J, Wang K, Du HL, Qiu L, Fan SM, Luo ZM (2020) Construction of novel TiO2/Bi4Ti3O12/MoS2 core/shell nanofibers for enhanced visible light photocatalysis. J Mater Sci Technol 36:97–105. https://doi.org/10.1016/j.jmst.2019.06.020

    Article  CAS  Google Scholar 

  37. Han Y, Chen P, Zhang C, Dong J, Liu H (2021) The buckling behavior of single-layer MoS2 sheets with kirigami-inspired structures under compression. Comput Mater Sci 188:110188. https://doi.org/10.1016/j.commatsci.2020.110188

    Article  CAS  Google Scholar 

  38. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F (2010) Emerging photoluminescence in monolayer MoS2. Nano Lett 10:1271–1275. https://doi.org/10.1021/nl903868w

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Han B, Hu YH (2016) MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng 4:285–304. https://doi.org/10.1002/ese3.128

    Article  CAS  Google Scholar 

  40. Szary MJ, Michalewicz MT, Radny MW (2019) Giant spin splitting induced by a symmetry-braking van der Waals interaction. Appl Surf Sci 494:619–626. https://doi.org/10.1016/j.flatc.2019.100141

    Article  ADS  CAS  Google Scholar 

  41. Zhao X, Ning S, Fu W, Pennycook SJ, Loh KP (2018) Differentiating polymorphs in molybdenum disulfide via electron microscopy. Adv Mater 30:1802397. https://doi.org/10.1002/adma.201802397

    Article  CAS  Google Scholar 

  42. Szary MJ (2020) Al doped MoS2 for adsorption-based water collection. Appl Surf Sci 529:147083. https://doi.org/10.1016/j.apsusc.2020.147083

    Article  CAS  Google Scholar 

  43. Ramsdell LS (1947) Studies on silicon carbide. Am Mineral 32:64–82

    CAS  Google Scholar 

  44. Krishnan U, Kaur M, Singh K, Kumar M, Kumar A (2019) A synoptic review of MoS2 synthesis to applications. Superlattices Microstruct 128:274–297. https://doi.org/10.1016/j.spmi.2019.02.005

    Article  ADS  CAS  Google Scholar 

  45. Wang Z, Mi B (2017) Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets. Environ Sci Technol 51:8229–8244. https://doi.org/10.1021/acs.est.7b01466

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Singh AK, Kumar P, Late DJ, Kumar A, Patel S, Singh J (2018) 2D layered transition metal dichalcogenides (MoS2): synthesis, applications and theoretical aspects. Appl Mater Today 13:242–270. https://doi.org/10.1016/j.apmt.2018.09.003

    Article  Google Scholar 

  47. Evans PE, Komesu T, Schwier EF, Kumar S, Shimada K, Dowben PA (2020) The band shifts in MoS2 (0001) and WSe2 (0001) induced by palladium adsorption. J Phys Condens Matter 32:465001. https://doi.org/10.1088/1361-648x/abadde

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Yun WS, Han SW, Hong SC, Kim IG, Lee JD (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W, X = S, Se, Te). Phys Rev B Condens Matter Mater Phys 85:033305. https://doi.org/10.1103/physrevb.85.033305

    Article  ADS  Google Scholar 

  49. Tang Q, Jiang DE (2016) Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal 6:4953–4961. https://doi.org/10.1021/acscatal.6b01211

    Article  CAS  Google Scholar 

  50. Liu Q, Fang Q, Chu W, Wan Y, Li X, Xu W, Habib M, Tao S, Zhou Y, Liu D et al (2017) Electron-doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem Mater 29:4738–4744. https://doi.org/10.1021/acs.chemmater.7b00446

    Article  CAS  Google Scholar 

  51. Hu T, Li R, Dong J (2013) A new (2 × 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J Chem Phys 139:174702. https://doi.org/10.1063/1.4827082

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Wu MH, Li L, Liu N, Wang DJ, Xue YC, Tang L (2018) Molybdenum disulfide (MoS2) as a co-catalyst for photocatalytic degradation of organic contaminants: a review. Process Saf Environ Prot 118:40–58. https://doi.org/10.1016/j.psep.2018.06.025

    Article  CAS  Google Scholar 

  53. Kour P, Yadav K (2022) Electrochemical performance of mixed-phase 1T/2H MoS2 synthesized by conventional hydrothermal v/s microwave-assisted hydrothermal method for supercapacitor applications. J Alloys Compd 922:166194. https://doi.org/10.1016/j.jallcom.2022.166194

    Article  CAS  Google Scholar 

  54. Mishra S, Maurya PK, Mishra AK (2020) 2H–MoS2 nanoflowers based high energy density solid state supercapacitor. Mater Chem Phys 255:123551. https://doi.org/10.1016/j.matchemphys.2020.123551

    Article  CAS  Google Scholar 

  55. Nie C, Yin M, Zhao Y, Zhao C, Zhang B, Song X, Yi X, Zhang Y, Luo L, Wang S (2021) Tailoring the fluorescent and electronic properties of 2H-MoS2 by step-by-step functionalization. J Phys Chem C 125:25739–25748. https://doi.org/10.1021/acs.jpcc.1c08239

    Article  CAS  Google Scholar 

  56. Li F, Shen T, Xu L, Hu C, Qi J (2019) Strain improving the performance of a flexible monolayer MoS2 photodetector. Adv Electron Mater 5:1900803. https://doi.org/10.1002/aelm.201900803

    Article  CAS  Google Scholar 

  57. Bai H, Wu Q, Ai H, Liu D, Feng J, Ang LK, Lu Y, Yang M, Pan H (2022) Interlayer-incorporation of MoS2(TM-MoS2) to achieve unique magnetic and electronic properties for spintronics. Adv Electron Mater 8:2200209. https://doi.org/10.1002/aelm.202200209

    Article  CAS  Google Scholar 

  58. Panasci SE, Koos A, Schilirò E, Di Franco S, Greco G, Fiorenza P, Roccaforte F, Agnello S, Cannas M, Gelardi FM et al (2022) Multiscale investigation of the structural, electrical and photoluminescence properties of MoS2 obtained by MoO3 sulfurization. Nanomaterials 12:182. https://doi.org/10.3390/nano12020182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saber MR, Khabiri G, Maarouf AA, Ulbricht M, Khalil ASG (2018) A comparative study on the photocatalytic degradation of organic dyes using hybridized 1T/2H, 1T/3R and 2H MoS2 nano-sheets. RSC Adv 8:26364–26370. https://doi.org/10.1039/C8RA05387A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiao Y, Tan M, Li Z, He L, Gao B, Chen Y, Zheng Y, Lin B (2021) Ethylenediamine-assisted phase engineering of 1T/2H–MoS2/graphene for efficient and stable electrocatalytic hydrogen evolution. Int J Hydrog Energy 46:11688–11700. https://doi.org/10.1016/j.ijhydene.2021.01.081

    Article  CAS  Google Scholar 

  61. Pirarath R, Shivashanmugam P, Syed A, Elgorban AM, Anandan S, Ashokkumar M (2021) Mercury removal from aqueous solution using petal-like MoS2 nanosheets. Front Environ Sci Eng 15:1–10. https://doi.org/10.1007/s11783-020-1307-0

    Article  CAS  Google Scholar 

  62. Zeng M, Yang B, Yan H, Qu H, Hu Y (2020) Efficient recovery of Ag(I) from aqueous solution using MoS2 nanosheets: adsorption study and DFT calculation. Chem Phys Lett 757:137865. https://doi.org/10.1016/j.cplett.2020.137865

    Article  CAS  Google Scholar 

  63. Massey AT, Gusain R, Kumari S, Khatri OP (2016) Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes. Ind Eng Chem Res 55:7124–7131. https://doi.org/10.1021/acs.iecr.6b01115

    Article  CAS  Google Scholar 

  64. Ghosh A, Kulsi C, Banerjee D, Mondal A (2016) Galvanic synthesis of Cu2−XSe thin films and their photocatalytic and thermoelectric properties. Appl Surf Sci 369:525–532. https://doi.org/10.1016/j.apsusc.2016.02.020

    Article  ADS  CAS  Google Scholar 

  65. Wu PR, Liu Z, Cheng ZL (2019) A top-down exfoliation for MoS2 nanosheets based on Li+/Na+-intercalated and shearing synergistic process. Mater Lett 248:236–240. https://doi.org/10.1016/j.matlet.2019.04.050

    Article  CAS  Google Scholar 

  66. Deepak DR, Nair MG, Halder S, Sharma AL, Mohapatra SR (2019) Liquid phase exfoliation of MoS2 nano-sheets and observation of resistive switching memory in MoS2 Nano-sheets-PVDF-HFP composite films. Mater Today Proc 18:5447–5453. https://doi.org/10.1016/j.matpr.2019.07.574

    Article  CAS  Google Scholar 

  67. Tan C, Cao X, Wu XJ, He Q, Yiang J, Zhang X, Chen J, Zhao W, Han S, Nam GH et al (2017) Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev 117:6225–6331. https://doi.org/10.1021/acs.chemrev.6b00558

    Article  CAS  PubMed  Google Scholar 

  68. Ambrosi A, Chia X, Sofer Z, Pumera M (2015) Enhancement of electrochemical and catalytic properties of MoS2 through ball-milling. Electrochem Commun 54:36–40. https://doi.org/10.1016/j.elecom.2015.02.017

    Article  CAS  Google Scholar 

  69. Ma H, Ben S, Shen Z, Zhang X, Wu C, Liao S, An F (2020) Investigating the exfoliation behavior of MoS2 and graphite in water: a comparative study. Appl Surf Sci 512:145588. https://doi.org/10.1016/j.apsusc.2020.145588

    Article  CAS  Google Scholar 

  70. Manamel LT, Mukherjee A, Das BC (2020) Two-dimensional nanohybrid of MoS2 and Rose Bengal: facile solution growth and band structure probing. Appl Surf Sci 530:147063. https://doi.org/10.1016/j.apsusc.2020.147063

    Article  CAS  Google Scholar 

  71. Singla R, Kumar S, Hackett TA, Reshak AH, Kashyap MK (2021) Genesis of magnetism in graphene/MoS2 van der Waals heterostructures via interface engineering using Cr-adsorption. J Alloys Compd 859:157776. https://doi.org/10.1016/j.jallcom.2020.157776

    Article  CAS  Google Scholar 

  72. Abraham T, Priyanka R, Joseph S, Plathanam N, Gigimol M, Mathew B (2020) Flower-like MoS2/BiFeO3 doped silver orthophosphate catalyst for visible-light assisted treatment of refractory organic pollutants. Appl Mater Today 21:100845. https://doi.org/10.1016/j.apmt.2020.100845

    Article  Google Scholar 

  73. Pan X, Kochovski Z, Sarhan R, Chen G, Taubert A, Mei S, Lu Y (2022) Template synthesis of dual-functional porous MoS2 nanoparticles with photothermal conversion and catalytic properties. Nanoscale 14:6888–6901. https://doi.org/10.1039/d2nr01040b

    Article  CAS  PubMed  Google Scholar 

  74. Gang R, Xu L, Xia Y, Cai J, Zhan L, Wang S, Li R (2020) Fabrication of MoS2 QDs/ZnO nanosheet 0D/2D heterojunction photocatalysts for organic dyes and gaseous heavy metal removal. J Colloid Interface Sci 579:853–861. https://doi.org/10.1016/j.jcis.2020.06.116

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Khabiri G, Aboraia AM, Soliman M, Guda AA, Butova VV, Yahia IS, Soldatov AV (2020) A novel α-Fe2O3@MoS2 QDs heterostructure for enhanced visible-light photocatalytic performance using ultrasonication approach. Ceram Int 46:19600–19608. https://doi.org/10.1016/j.ceramint.2020.05.021

    Article  CAS  Google Scholar 

  76. Thayil R, Cherukulappurath S (2023) SERS-based detection of efficient removal of organic dyes using molybdenum dichalcogenide nanostructures. Nano Ex 4:035005. https://doi.org/10.1088/2632-959X/acef43

    Article  ADS  Google Scholar 

  77. Sun Y, Wang S, Qiong-Sheng W (2009) Flowerlike MoS2 nanoparticles: solvothermal synthesis and characterization. Front Chem China 4:173–176. https://doi.org/10.1007/s11458-009-0025-8

    Article  Google Scholar 

  78. Chandrabose G, Dey A, Gaur SS, Sudhagar P, Jagadeesan H, Braithwaite N, Selvaraj V, Kumar V, Krishnamurthy S (2021) Removal and degradation of mixed dye pollutants by integrated adsorption-photocatalysis technique using 2-D MoS/TiO2 nanocomposite. Chemosphere 279:130467. https://doi.org/10.1016/j.chemosphere.2021.130467

    Article  CAS  PubMed  Google Scholar 

  79. Strachan J, Masters AF, Maschmeyer T (2021) 3R-MoS2 in review: history, status, and outlook. ACS Appl Energy Mater 4:7405–7418. https://doi.org/10.1021/acsaem.1c00638

    Article  CAS  Google Scholar 

  80. Li H, Zhu X, Tang ZK, Zhang XH (2018) Low-temperature photoluminescence emission of monolayer MoS2 on diverse substrates grown by CVD. J Lumin 199:210–215. https://doi.org/10.1016/j.jlumin.2018.03.052

    Article  CAS  Google Scholar 

  81. Park HJ, Kim MS, Kim J, Joo J (2016) Photo-responsive transistors of CVD grown single-layer MoS2 and its nanoscale optical characteristics. Curr Appl Phys 16:1320–1325. https://doi.org/10.1016/j.cap.2016.07.006

    Article  ADS  Google Scholar 

  82. Tsigkourakos M, Kainourgiaki M, Skotadis E, Giannakopoulos KP, Tsoukalas D, Raptis YS (2021) Capping technique for chemical vapor deposition of large and uniform MoS2 flakes. Thin Solid Film 733:138808. https://doi.org/10.1016/j.tsf.2021.138808

    Article  ADS  CAS  Google Scholar 

  83. Liu P, Cai S, Zuo Y, Tian M, Wang Z, Ling L, Sun X (2021) Synthesis of interlayer expanded MoS2 by sulfurization of MoO3 with enhanced sodium-ion storage. J Alloy Compd 895:162691. https://doi.org/10.1016/j.jallcom.2021.162691

    Article  CAS  Google Scholar 

  84. Xin X, Song Y, Guo S, Zhang Y, Wang B, Wang Y, Li X (2020) One-step synthesis of P-doped MoS2 for efficient photocatalytic hydrogen production. J Alloys Compd 829:154635. https://doi.org/10.1016/j.jallcom.2020.154635

    Article  CAS  Google Scholar 

  85. Liu F, Wang N, Shi C, Sha J, Ma L, Liu E, Zhao N (2022) Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries. Chem Eng J 431:133923. https://doi.org/10.1016/j.cej.2021.133923

    Article  CAS  Google Scholar 

  86. Li J, He T, Zhao Y, Zhang X, Zhong W, Zhang X, Ren J, Chen Y (2022) In-situ N-doped ultrathin MoS2 anchored on N-doped carbon nanotubes skeleton by Mo-N bonds for fast pseudocapacitive sodium storage. J Alloys Compd 897:163170. https://doi.org/10.1016/j.jallcom.2021.163170

    Article  CAS  Google Scholar 

  87. Song HJ, You S, Jia XH, Yang J (2015) MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram Int 41:13896–13902. https://doi.org/10.1016/j.ceramint.2015.08.023

    Article  CAS  Google Scholar 

  88. Ma Z, Hu L, Li X, Deng L, Fan G, He Y (2019) A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram Int 45:15824–15833. https://doi.org/10.1016/j.ceramint.2019.05.085

    Article  CAS  Google Scholar 

  89. Putritama V, Fauzia V, Supangat A (2020) The effect of the layer number of MoS2 nanosheets on the photocatalytic efficiency of ZnO/MoS2. Surfaces Interfaces 21:100745. https://doi.org/10.1016/j.surfin.2020.100745

    Article  CAS  Google Scholar 

  90. Liu S, Nie C, Zhou D, Shen J, Feng S (2020) Direct growth of vertical structure MoS2 nanosheets array film via CVD method for photodetection. Phys E Low Dimens Syst Nanostruct 117:113592. https://doi.org/10.1016/j.physe.2019.113592

    Article  CAS  Google Scholar 

  91. Cui B, Cai X, Wang W, Saha P, Wang G (2022) Nano storage-boxes constructed by the vertical growth of MoS2 on graphene for high-performance Li-S batteries. J Energy Chem 66:91–99. https://doi.org/10.1016/j.jechem.2021.06.035

    Article  CAS  Google Scholar 

  92. Wu Y, Su M, Chen J, Xu Z, Tang J, Chang X, Chen D (2019) Superior adsorption of methyl orange by h-MoS2 microspheres: isotherm, kinetics, and thermodynamic studies. Dye Pigment 170:1–8. https://doi.org/10.1016/j.dyepig.2019.107591

    Article  CAS  Google Scholar 

  93. Han S, Liu K, Hu L, Teng F, Yu P, Zhu Y (2017) Superior adsorption and regenerable dye adsorbent based on flower-like molybdenum disulfide nanostructure. Sci Rep 7:43599. https://doi.org/10.1038/srep43599

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. Prieto-Rodriguez L, Miralles-Cuevas S, Oller I, Agüera A, Puma GL, Malato S (2012) Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations. J Hazard Mater 211–212:131–137. https://doi.org/10.1016/j.jhazmat.2011.09.008

    Article  CAS  PubMed  Google Scholar 

  95. Yuan YJ, Lu HW, Yu ZT, Zou ZG (2015) Noble-metal-free molybdenum disulfide cocatalyst for photocatalytic hydrogen production. Chem Sus Chem 8:4113–4127. https://doi.org/10.1002/cssc.201501203

    Article  CAS  Google Scholar 

  96. Quan Y, Su R, Hu M, Lang J, Fan H, Shen H, Gao M, Li B, Liu Y, Yang J (2020) Construction of an MZO heterojunction system with improved photocatalytic activity for degradation of organic dyes. Cryst Eng Comm 22:7059–7065. https://doi.org/10.1039/D0CE00581A

    Article  CAS  Google Scholar 

  97. Guo J, Yang C, Sun Z, Yang Z, Wang L, Lu C, Ma Z, Guo F (2020) Ternary Fe3O4/MoS2/BiVO4 nanocomposites: novel magnetically separable visible light-driven photocatalyst for efficient degradation of antibiotic wastewater through p–n heterojunction. J Mater Sci Mater Electron 31:16746–16758. https://doi.org/10.1007/s10854-020-04230-9

    Article  CAS  Google Scholar 

  98. Lin X, Wang X, Zhou Q, Wen C, Su S, Xiang J, Cheng P, Hu X, Li Y, Wang X, Gao X, Nözel R, Zhou G, Zhang Z, Liu J (2018) Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance. ACS Sustain Chem Eng 7:1673–1682. https://doi.org/10.1021/acssuschemeng.8b05440

    Article  CAS  Google Scholar 

  99. Gedanken A, Sadhanala H, Senapati S, Harika K, Nanda K (2018) Green synthesis of MoS2 nanoflowers for efficient degradation of methylene blue and crystal violet dyes under natural sun light conditions. New J Chem 42:14318–14324. https://doi.org/10.1039/C8NJ01731J

    Article  Google Scholar 

  100. Rani A, Singh K, Sharma P (2022) Investigation of visible light photocatalytic degradation of organic dyes by MoS2 nanosheets synthesized by different routes. Bull Mater Sci 45:63. https://doi.org/10.1007/s12034-022-02655-y

    Article  Google Scholar 

  101. Zhang X, Xia M, Wang F, Lei W (2020) Cu2O/MoS2 composites: a novel photocatalyst for photocatalytic degradation of organic dyes under visible light. Ionics 26:6359. https://doi.org/10.1007/s11581-020-03749-5

    Article  CAS  Google Scholar 

  102. Mahalakshmi G, Rajeswari M, Ponnarasi P (2020) Synthesis of few-layer g-C3N4 nanosheets-coated MoS2/TiO2 heterojunction photocatalysts for photo-degradation of methyl orange (MO) and 4-nitrophenol (4-NP) pollutants. Inorg Chem Commun 120:108146. https://doi.org/10.1016/j.inoche.2020.108146

    Article  CAS  Google Scholar 

  103. Chen L, Chuang Y, Nguyen B, Chang J, Lam SS, Chen C, Dong C (2020) Novel molybdenum disulfide heterostructure nanohybrids with enhanced visible-light-induced photocatalytic activity towards organic dyes. J Alloy Compd 848:156448. https://doi.org/10.1016/j.jallcom.2020.156448

    Article  CAS  Google Scholar 

  104. Nayak S, Swain G, Parida K (2019) Enhanced photocatalytic activities of RhB degradation and H2 evolution from in situ formation of the electrostatic heterostructure MoS2/NiFe LDH nanocomposite through the Z-Scheme mechanism via p–n heterojunctions. ACS Appl Mater Interfaces 11:20923–20942. https://doi.org/10.1021/acsami.9b06511

    Article  CAS  PubMed  Google Scholar 

  105. Adhikari S, Mandai S, Kim D (2020) Free-standing Ag nanoparticle-decorated MoS2 microflowers grown on carbon cloth for photocatalytic oxidation of Rhodamine B. Korean J Chem Eng 37:2359–2367. https://doi.org/10.1007/s11814-020-0705-0

    Article  CAS  Google Scholar 

  106. Nandigana P, Mahato S, Dhandapani M, Pradhan B, Subramanian B, Panda S (2022) Lyophilized tin-doped MoS2 as an efficient photocatalyst for overall degradation of Rhodamine B dye. J Alloys Compounds 907:164470. https://doi.org/10.1016/j.jallcom.2022.164470

    Article  CAS  Google Scholar 

  107. Luo M, Xu J, Xu W, Zheng Y, Wu G, Jeong T (2023) Photocatalytic activity of MoS2 nanoflower-modified CaTiO3 composites for degradation of RhB under visible light. Nanomaterials. https://doi.org/10.3390/nano13040636

    Article  PubMed  PubMed Central  Google Scholar 

  108. Gopal R, Chinnapan M, Kumar BA, Rotte N, Ponraj J, Ganesan R, Ivanov A, Manivannan N, Kumar M, Gaspar J (2020) Facile synthesis and defect optimization of 2D-layered MoS2 on TiO2 heterostructure for industrial effluent, wastewater treatments. Sci Reports 10:21625. https://doi.org/10.1038/s41598-020-78268-4

    Article  ADS  CAS  Google Scholar 

  109. Sharma P, Singh MK, Mehata M (2021) Sunlight-driven MoS2 nanosheets mediated degradation of dye (crystal violet) for wastewater treatment. J Mol Struct 1249:131651. https://doi.org/10.1016/j.molstruc.2021.131651

    Article  CAS  Google Scholar 

  110. Yuan Y, Guo R, Hong L, Ji X, Li Z, Lin Z, Pan W (2021) Recent advances and perspectives of MoS2-based materials for photocatalytic dyes degradation: a review. Colloids Surf, A 611:125836. https://doi.org/10.1016/j.colsurfa.2020.125836

    Article  CAS  Google Scholar 

  111. Zhang H, Fan X, Quan X, Chen S, Yu H (2011) Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environ Sci Technol 45(13):5731–5736. https://doi.org/10.1021/es2002919

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Oku T, Kakuta N, Kobayashi K, Suzuki A, Kikuchi K (2011) Fabrication and characterization of TiO2-based dye-sensitized solar cells. Progres Nat Sci Mater Int 21(2):122–126. https://doi.org/10.1016/s1002-0071(12)60045-8

    Article  Google Scholar 

  113. Liang C, Feng Y, Zhou X, Zhang Q, Nie W, Wang W, Zhang Y, He C (2020) Correction to one-pot synthesis of MoS2 nanoflakes with desirable degradability for photothermal cancer therapy. ACS Appl Mater Interfaces 12:6794. https://doi.org/10.1021/acsami.9b23618

    Article  CAS  Google Scholar 

  114. Ribeiro R, Oliveira M, Bomio M, De Lazaro S, Andrés J, Longo E (2020) Connecting the surface structure, morphology and photocatalytic activity of Ag2O: an in depth and unified theoretical investigation. Appl Surf Sci 509:145321. https://doi.org/10.1016/j.apsusc.2020.145321

    Article  CAS  Google Scholar 

  115. Zhou W, Yin Z, Du Y, Huang X, Zeng Z, Fan Z, Liu H, Wang J, Zhang H (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9(1):140–147. https://doi.org/10.1002/smll.201201161

    Article  CAS  PubMed  Google Scholar 

  116. Rani A, Patel AK, Chakraborti A, Singh K, Sharma P (2021) Enhanced photocatalytic activity of plasmonic Au nanoparticles incorporated MoS2 nanosheets for degradation of organic dyes. J Mater Sci: Mater Electron 32:6168–6184. https://doi.org/10.1007/s10854-021-05334-6

    Article  CAS  Google Scholar 

  117. Omar AM, Hassen A, Metwalli OI, Saber MR, Mohamed SR, Khalil AS (2021) Construction of 2D layered TiO2@MoS2 heterostructure for efficient adsorption and photodegradation of organic dyes. Nanotechnology 32:8. https://doi.org/10.1088/1361-6528/abff8a

    Article  CAS  Google Scholar 

  118. Tian Q, Wu W, Yang S et al (2017) Zinc oxide coating effect for the dye removal and photocatalytic mechanisms of flower-like MoS2 nanoparticles. Nanoscale Res Lett 12:221. https://doi.org/10.1186/s11671-017-2005-0

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  119. Karpuraranjith M, Chen Y, Rajaboopathi S, Srinivas K, Yang D, Wang B (2022) Three-dimensional porous MoS2 nanobox embedded g-C3N4@TiO2 architecture for highly efficient photocatalytic degradation of organic pollutant. J Colloid Interface Sci 605:613–623. https://doi.org/10.1016/j.jcis.2021.07.133

    Article  ADS  CAS  PubMed  Google Scholar 

  120. Zhang X, Fu K, Su Z (2021) Fabrication of 3D MoS2-TiO2@PAN electro-spun membrane for efficient and recyclable photocatalytic degradation of organic dyes. Mater Sci Eng, B 269:115179. https://doi.org/10.1016/j.mseb.2021.115179

    Article  CAS  Google Scholar 

  121. Zhang Y, Qi H, Zhang L, Wang Y, Zhong L, Zheng Y, Wen X, Zhang X, Xue J (2021) A RGO aerogel/TiO2/MoS2 composite photocatalyst for the removal of organic dyes by the cooperative action of adsorption and photocatalysis. Environ Sci Pollut Res 29:8980–8995. https://doi.org/10.1007/s11356-021-16143-z

    Article  CAS  Google Scholar 

  122. Ren B, Shen W, Li L, Wu S, Wang W (2018) 3D CoFe2O4 nanorod/flower-like MoS2 nanosheet heterojunctions as recyclable visible light-driven photocatalysts for the degradation of organic dyes. Appl Surf Sci 447:711–723. https://doi.org/10.1016/j.apsusc.2018.04.064

    Article  ADS  CAS  Google Scholar 

  123. Ma G, Pan Z, Liu Y, Lü Y, Tao Y (2023) Hydrothermal synthesis of MoS2/SnS2 photocatalysts with heterogeneous structures enhances photocatalytic activity. Materials 16:4436. https://doi.org/10.3390/ma16124436

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Ntakadzeni M, Anku WW, Kumar N, Govender PP, Reddy L (2019) PEGylated MoS2 nanosheets: a dual functional photocatalyst for photodegradation of organic dyes and photoreduction of chromium from aqueous solution. Bull Chem React Eng Catal 14:142–152. https://doi.org/10.9767/bcrec.14.1.2258.142-152

    Article  CAS  Google Scholar 

  125. Chen J, Liao Y, Wan X, Tie S, Zhang B, Lan S, Gao J (2020) A high performance MoO3@MoS2 porous nanorods for adsorption and photodegradation of dye. J Solid State Chem 291:121652. https://doi.org/10.1016/j.jssc.2020.121652

    Article  CAS  Google Scholar 

  126. Ghalajkhani A, Haghighi M, Shabani M (2018) Efficient photocatalytic degradation of methylene blue in aqueous solution over flowerlike nanostructured MoS2-FeZnO staggered heterojunction under simulated solar-light irradiation. J Photochem Photobiol, A 359:145–156. https://doi.org/10.1016/j.jphotochem.2018.03.042

    Article  CAS  Google Scholar 

  127. Peng K, Li X, Wang J, Xu L, Niu M, Ma M, Yang J (2019) One-step hydrothermal growth of MoS2 nanosheets/CdS nanoparticles heterostructures on montmorillonite for enhanced visible light photocatalytic activity. Appl Clay Sci 175:86–93. https://doi.org/10.1016/j.clay.2019.04.007

    Article  CAS  Google Scholar 

  128. Zhang S, Guo S, Li A, Liu D, Sun H, Zhao F (2022) Low-cost bauxite residue-MoS2 possessing adsorption and photocatalysis ability for removing organic pollutants in wastewater. Sep Purif Technol 283:120144. https://doi.org/10.1016/j.seppur.2021.120144

    Article  CAS  Google Scholar 

  129. Ritika KM, Umar A, Mehta SK, Singh S, Kansal SK, Fouad H, Alothman OY (2018) Rapid Solar-Light driven superior photocatalytic degradation of methylene blue using MOS2-ZNO heterostructure nanorods photocatalyst. Materials 11(11):2254. https://doi.org/10.3390/ma11112254

    Article  ADS  CAS  PubMed Central  Google Scholar 

  130. Cao W, Zhang Y, Shi Z, Liu T, Song X, Zhang L, Wong PK, Chen Z (2021) Boosting the adsorption and photocatalytic activity of carbon fiber/MoS2-based weavable photocatalyst by decorating UiO-66-NH2 nanoparticles. Chem Eng J 417:128112. https://doi.org/10.1016/j.cej.2020.128112

    Article  CAS  Google Scholar 

  131. Monga D, Ilager D, Shetti NP, Basu S, Aminabhavi TM (2020) 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants. J Environ Manage 274:111208. https://doi.org/10.1016/j.jenvman.2020.111208

    Article  CAS  PubMed  Google Scholar 

  132. Li Y (2018) Template-free synthesis of uniform rose-like MoS2 hierarchitectures and their enhanced photocatalytic properties. J Mater Sci Mater Electron 29:19393–19401. https://doi.org/10.1007/s10854-018-0068-z

    Article  ADS  CAS  Google Scholar 

  133. Wang Y, Chen W, Chen X, Feng H, Shen D, Huang B, Jia Y, Zhou Y, Liang Y (2018) Effect of sulfur source on photocatalytic degradation performance of CdS/MoS2 prepared with one-step hydrothermal synthesis. J Environ Sci 65:347–355. https://doi.org/10.1016/j.jes.2017.07.004

    Article  CAS  Google Scholar 

  134. Wang C, Jin J, Sun Y, Yao J, Zhao G, Liu Y (2017) In-situ synthesis and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite. Chem Eng J 327:774–782. https://doi.org/10.1016/j.cej.2017.06.163

    Article  CAS  Google Scholar 

  135. Wang Q, Dong S, Zhang D, Yu C, Lu J, Wang D, Sun J (2018) Magnetically recyclable visible-light responsive MoS2@Fe3O4 photocatalysts targeting efficient wastewater treatment. J Mater Sci 53:1135–1147. https://doi.org/10.1007/s10853-017-1608-2

    Article  ADS  CAS  Google Scholar 

  136. Mohona TTM, Gupta A, Masud A, Chien SC, Lin LC, Nalam PC, Aich N (2019) Aggregation behavior of inorganic 2D nanomaterials beyond graphene: insights from molecular modeling and modified DLVO theory. Environ Sci Technol 53:4161–4172. https://doi.org/10.1021/acs.est.8b05180

    Article  ADS  CAS  PubMed  Google Scholar 

  137. Zou W, Zhou Q, Zhang X, Hu X (2019) Dissolved oxygen and visible light irradiation drive the structural alterations and phytotoxicity mitigation of Single-Layer molybdenum disulfide. Environ Sci Technol 53:7759–7769. https://doi.org/10.1021/acs.est.9b00088

    Article  ADS  CAS  PubMed  Google Scholar 

  138. Vattikuti SP, Byon C, Reddy CV, Venkatesh B, Shim J (2015) Synthesis and structural characterization of MoS2 nanospheres and nanosheets using solvothermal method. J Mater Sci 50(14):5024–5038. https://doi.org/10.1007/s10853-015-9051-8

    Article  ADS  CAS  Google Scholar 

  139. Sovizi S, Szoszkiewicz R (2022) Single atom doping in 2D layered MoS2 from a periodic table perspective. Surf Sci Rep 77(3):100567. https://doi.org/10.1016/j.surfrep.2022.100567

    Article  CAS  Google Scholar 

  140. Xu Z, Lu J, Zheng X, Chen B, Luo Y, Tahir MN, Huang B, Xia X, Pan X (2020) A critical review on the applications and potential risks of emerging MoS2 nanomaterials. J Hazard Mater 399:123057. https://doi.org/10.1016/j.jhazmat.2020.123057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not Applicable

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable.

Corresponding author

Correspondence to Saidi Reddy Parne.

Ethics declarations

Conflict of interest

Authors confirm no conflict of interest.

Data and code availability

Not Applicable.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thayil, R., Gandi, S., Parne, S.R. et al. Recent advances and perspectives of molybdenum disulfide and molybdenum disulfide based nanocomposites for adsorption and photocatalytic degradation of organic dyes: a review. J Mater Sci 59, 3225–3252 (2024). https://doi.org/10.1007/s10853-024-09441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09441-7

Navigation