Skip to main content
Log in

Pyridinic N and semi-ionic F Co-functionalized biochar nanofibers as efficient metal-free electrocatalysts for oxygen reduction reaction

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exorbitant cost and limited availability of platinum-based electrocatalysts for the oxygen reduction reaction (ORR) in metal–air batteries and alkaline fuel cells pose significant obstacles to the large-scale commercialization of these clean-energy technologies. Herein, we employed a cost-effective and sustainable bacterial cellulose biomass as the precursor to prepare a nitrogen and fluorine codoped metal-free ORR electrocatalyst (BCC-NF-900) by direct pyrolysis regulation. The BCC-NF-900 inherited the three-dimensional framework of bacterial cellulose, exhibiting a robust porous structure with a Brunauer–Emmett–Teller surface area of 196.9 m2·g−1. The pyridinic N (0.6 at%) and semi-ionic F (0.34 at%) species formed in the inert sp2 carbon skeletons synergistically regulated the electron spin and charge density of the adjacent C atoms. Such rational combination of a rapid transport pathway and effective active site led to high ORR activity (onset potential 0.89 V vs. RHE), methanol resistance, and electrochemical stability (merely 6.9% current loss) in alkaline electrolyte. Importantly, compared to the mere F-doped BCC-F-900 (onset potential 0.82 V vs. RHE) and N-doped BCC-N-900 (onset potential 0.77 V vs. RHE) catalysts, the BCC-NF-900 catalyst exhibited a markedly enhanced ORR performance, as evidenced by the measured onset potential. This study provides an available reference for the design of efficient metal-free catalysts for ORR, presenting a promising alternative to Pt/C catalysts in metal–air batteries and alkaline fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

Direct request to the corresponding author.

References

  1. Chen YJ, Ji SF, Zhao S, Chen WX, Dong JC, Cheong WC, Shen RA, Wen XD, Zheng LR, Rykov AI, Cai SC, Tang HL, Zhuang ZB, Chen C, Peng Q, Wang DS, Li YD (2018) Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat Commun 9:5422. https://doi.org/10.1038/s41467-018-07850-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Asset T, Atanassov P (2020) Iron-nitrogen-carbon catalysts for proton exchange membrane fuel cells. Joule 4:33–44. https://doi.org/10.1016/j.joule.2019.12.002

    Article  CAS  Google Scholar 

  3. Li YY, Zhang PY, Wan LY, Zheng YP, Qu XM, Zhang HK, Wang YS, Zaghib K, Yuan JY, Sun SH, Wang YC, Zhou ZY, Sun SG (2021) A general carboxylate-assisted approach to boost the ORR performance of ZIF-derived Fe/N/C catalysts for proton exchange membrane fuel cells. Adv Funct Mater 31:2009645. https://doi.org/10.1002/adfm.202009645

    Article  CAS  Google Scholar 

  4. Li S, Zhang Y, Liang XP, Wang HM, Lu HJ, Zhu MJ, Wang HM, Zhang MC, Qiu XP, Song YF, Zhang YY (2022) Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management. Nat Commun 13:5416. https://doi.org/10.1038/s41467-022-33133-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kabir S, Serov A, Atanassov P (2018) 3D-graphene supports for palladium nanoparticles: effect of micro/macropores on oxygen electroreduction in anion exchange membrane fuel cells. J Power Sources 375:255–264. https://doi.org/10.1016/j.jpowsour.2017.08.092

    Article  CAS  Google Scholar 

  6. Li HY, Zhang XL, Qin Y, Liu YF, Wang JN, Peng LC, Li CJ (2021) Crafting controllable Fe-based hierarchically organic-frameworks from bacterial cellulose nanofibers for efficient electrocatalysts in microbial fuel cells. J Power Sources 512:230522. https://doi.org/10.1016/j.jpowsour.2021.230522

    Article  CAS  Google Scholar 

  7. Hossen MM, Hasan MS, Sardar MRI, Haider JB, Mottakin TK, Atanassov P (2023) State-of-the-art and developmental trends in platinum group metal-free cathode catalyst for anion exchange membrane fuel cell (AEMFC). Appl Catal B-Environ 325:121733. https://doi.org/10.1016/j.apcatb.2022.121733

    Article  CAS  Google Scholar 

  8. Liang HW, Wu ZY, Chen LF, Li C, Yu SH (2015) Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11:366–376. https://doi.org/10.1016/j.nanoen.2014.11.008

    Article  CAS  Google Scholar 

  9. Xiong Y, Yang Y, DiSalvo FJ, Abruna HD (2018) Pt-decorated composition-tunable Pd-Fe@Pd/C core-shell nanoparticles with enhanced electrocatalytic activity toward the oxygen reduction reaction. J Am Chem Soc 140:7248–7255. https://doi.org/10.1021/jacs.8b03365

    Article  CAS  PubMed  Google Scholar 

  10. Xiong Y, Yang Y, DiSalvo FJ, Abruna HD (2019) Metal-organic-framework-derived Co-Fe bimetallic oxygen reduction electrocatalysts for alkaline fuel cells. J Am Chem Soc 141:10744–10750. https://doi.org/10.1021/jacs.9b03561

    Article  CAS  PubMed  Google Scholar 

  11. Zhang S, Yuan XZ, Hin JNC, Wang H, Friedrich KA, Schulze M (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194:588–600. https://doi.org/10.1016/j.jpowsour.2009.06.073

    Article  CAS  Google Scholar 

  12. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764. https://doi.org/10.1126/science.1168049

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Liu RL, Wu DQ, Feng XL, Mullen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed 49:2565–2569. https://doi.org/10.1002/anie.200907289

    Article  CAS  Google Scholar 

  14. Yang W, Fellinger TP, Antonietti M (2011) Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J Am Chem Soc 133:206–209. https://doi.org/10.1021/ja108039j

    Article  CAS  PubMed  Google Scholar 

  15. Wang SY, Iyyamperumal E, Roy A, Xue YH, Yu DS, Dai LM (2011) Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: a synergetic effect by co-doping with boron and nitrogen. Angew Chem Int Ed 50:11756–11760. https://doi.org/10.1002/anie.201105204

    Article  CAS  Google Scholar 

  16. Ju QJ, Ma RG, Hu YF, Guo BB, Liu Q, Thomas T, Zhang T, Yang MH, Chen W, Wang JC (2020) Highly localized C-N2 sites for efficient oxygen reduction. ACS Catal 10:9366–9375. https://doi.org/10.1021/acscatal.0c00474

    Article  CAS  Google Scholar 

  17. Zhao SY, Liu J, Li CX, Ji WB, Yang MM, Huang H, Liu Y, Kang ZH (2014) Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction. ACS Appl Mater Interfaces 6:22297–22304. https://doi.org/10.1021/am506284k

    Article  CAS  PubMed  Google Scholar 

  18. Zheng Y, Chen S, Zhang KAI, Zhu JX, Xu JS, Zhang C, Liu TX (2021) Ultrasound-triggered assembly of covalent triazine framework for synthesizing heteroatom-doped carbon nanoflowers boosting metal-free bifunctional electrocatalysis. ACS Appl Mater Interfaces 13:13328–13337. https://doi.org/10.1021/acsami.1c01348

    Article  CAS  PubMed  Google Scholar 

  19. Lai LF, Potts JR, Zhan D, Wang L, Poh CK, Tang CH, Gong H, Shen ZX, Lin JY, Ruoff RS (2012) Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ Sci 5:7936–7942. https://doi.org/10.1039/C2EE21802J

    Article  CAS  Google Scholar 

  20. Kabir S, Artyushkova K, Serov A, Atanassov P (2018) Role of nitrogen moieties in N-doped 3D-graphene nanosheets for oxygen electroreduction in acidic and alkaline media. ACS Appl Mater Interfaces 10:11623–11632. https://doi.org/10.1021/acsami.7b18651

    Article  CAS  PubMed  Google Scholar 

  21. Lv Q, Si WY, He JJ, Sun L, Zhang CF, Wang N, Yang Z, Li XD, Wang X, Deng WQ, Long YZ, Huang CS, Li YL (2018) Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat Commun 9:3376. https://doi.org/10.1038/s41467-018-05878-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guo DH, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351:361–365. https://doi.org/10.1126/science.aad0832

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Huang Y, Tang KY, Yuan FS, Zhang WW, Li BG, Seidi F, Xiao HN, Sun DP (2020) N-doped porous carbon nanofibers fabricated by bacterial cellulose-directed templating growth of MOF crystals for efficient oxygen reduction reaction and sodium-ion storage. Carbon 168:12–21. https://doi.org/10.1016/j.carbon.2020.06.052

    Article  CAS  Google Scholar 

  24. Wang L, Dong HL, Guo ZY, Zhang LL, Hou TJ, Li YY (2016) Potential application of novel boron-doped graphene nanoribbonas oxygen reduction reaction catalyst. J Phys Chem C 120:17427–17434. https://doi.org/10.1021/acs.jpcc.6b04639

    Article  CAS  Google Scholar 

  25. Patel MA, Luo FX, Khoshi MR, Rabie E, Zhang Q, Flach CR, Mendelsohn R, Garfunkel E, Szostak M, He HX (2016) P-doped porous carbon as metal free catalysts for selective aerobic oxidation with an unexpected mechanism. ACS Nano 10:2305–2315. https://doi.org/10.1021/acsnano.5b07054

    Article  CAS  PubMed  Google Scholar 

  26. Kou ZK, Guo BB, He DP, Zhang J, Mu SC (2018) Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction. ACS Energy Lett 3:184–190. https://doi.org/10.1021/acsenergylett.7b01133

    Article  CAS  Google Scholar 

  27. Gao SY, Liu HY, Geng KR, Wei XJ (2015) Honeysuckles-derived porous nitrogen, sulfur, dual-doped carbon as high-performance metal-free oxygen electroreduction catalyst. Nano Energy 12:785–793. https://doi.org/10.1016/j.nanoen.2015.02.004

    Article  CAS  Google Scholar 

  28. Zhang ZP, Yang SX, Li HY, Zan YX, Li XY, Zhu Y, Dou ML, Wang F (2019) Sustainable carbonaceous materials derived from biomass as metal-free electrocatalysts. Adv Mater 31:1805718. https://doi.org/10.1002/adma.201805718

    Article  CAS  Google Scholar 

  29. Xin SS, Li YF, Guan J, Ma BR, Zhang CL, Ma XM, Liu WJ, Xin YJ, Gao MC (2021) Electrocatalytic oxygen reduction to hydrogen peroxide through a biomass-derived nitrogen and oxygen self-doped porous carbon metal-free catalyst. J Mater Chem A 9:25136–25149. https://doi.org/10.1039/d1ta06955a

    Article  CAS  Google Scholar 

  30. Zhou LH, Fu P, Wen DH, Yuan Y, Zhou SG (2016) Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts. Appl Catal B Environ 181:635–643. https://doi.org/10.1016/j.apcatb.2015.08.035

    Article  CAS  Google Scholar 

  31. Wang N, Li TF, Song Y, Liu JJ, Wang F (2018) Metal-free nitrogen-doped porous carbons derived from pomelo peel treated by hypersaline environments for oxygen reduction reaction. Carbon 130:692–700. https://doi.org/10.1016/j.carbon.2018.01.068

    Article  CAS  Google Scholar 

  32. Zhang F, Miao JY, Liu WQ, Xu DY, Li XJ (2019) Heteroatom embedded graphene-like structure anchored on porous biochar as efficient metal-free catalyst for ORR. Int J Hydrogen Energy 44:30986–30998. https://doi.org/10.1016/j.ijhydene.2019.09.239

    Article  CAS  Google Scholar 

  33. Chaudhari KN, Song MY, Yu JS (2014) Transforming hair into heteroatom-doped carbon with high surface area. Small 10:2625–2636. https://doi.org/10.1002/smll.201303831

    Article  CAS  PubMed  Google Scholar 

  34. Guo CZ, Hu R, Liao WL, Li ZB, Sun LT, Shi DP, Li YR, Chen CG (2017) Protein-enriched fish “biowaste” converted to three-dimensional porous carbon nano-network for advanced oxygen reduction electrocatalysis. Electrochim Acta 236:228–238. https://doi.org/10.1016/j.electacta.2017.03.169

    Article  CAS  Google Scholar 

  35. Li YM, Chen MH, Chu MM, Wang X, Wang YX, Lin XS, Cao XB (2021) Mono-doped carbon nanofiber aerogel as a high-performance electrode material for rechargeable zinc-air batteries. ChemElectroChem 8:829–838. https://doi.org/10.1002/celc.202001593

    Article  CAS  Google Scholar 

  36. Shi Q, Ma Y, Qin L, Tang B, Yang WY, Liu Q (2019) Metal-free hybrid of nitrogen-doped nanocarbon@carbon networks for highly efficient oxygen reduction electrocatalyst. ChemElectroChem 6:2924–2930. https://doi.org/10.1002/celc.201900662

    Article  CAS  Google Scholar 

  37. Zhang F, Zhang DQ, Liu WQ, Miao JY, Li XJ (2021) Ultralow Pt doped on N-based carbon as a promising electrocatalyst for high-temperature proton exchange membrane fuel cells. ACS Appl Energy Mater 4:9881–9890. https://doi.org/10.1021/acsaem.1c01898

    Article  CAS  Google Scholar 

  38. Peera SG, Sahu AK, Arunchander A, Bhat SD, Karthikeyan J, Murugan P (2015) Nitrogen and fluorine co-doped graphite nanofibers as high durable oxygen reduction catalyst in acidic media for polymer electrolyte fuel cells. Carbon 93:130–142. https://doi.org/10.1016/j.carbon.2015.05.002

    Article  CAS  Google Scholar 

  39. Cao L, Zhou XH, Li ZH, Su KM, Cheng BW (2019) Nitrogen and fluorine hybridization state tuning in hierarchical honeycomb-like carbon nanofibers for optimized electrocatalytic ORR in alkaline and acidic electrolytes. J Power Sources 413:376–383. https://doi.org/10.1016/j.jpowsour.2018.12.076

    Article  CAS  Google Scholar 

  40. Enneffatia M, Rasheed M, Louatia B, Guidaraa K, Shihab S, Barille R (2021) Investigation of structural, morphology, optical properties and electrical transport conduction of Li0.25Na0.75CdVO4 compound. J Phys: Conf Ser 1795:012050. https://doi.org/10.1088/1742-6596/1795/1/012050

    Article  CAS  Google Scholar 

  41. Rasheed M, Barille R (2017) Comparison the optical properties for Bi2O3 and NiO ultrathin films deposited on different substrates by DC sputtering technique for transparent electronics. J Alloy Compd 728:1186–1198. https://doi.org/10.1016/j.jallcom.2017.09.084

    Article  CAS  Google Scholar 

  42. Lv Q, Wang N, Si WY, Hou ZF, Li XD, Wang X, Zhao FH, Yang Z, Zhang YL, Huang CS (2020) Pyridinic nitrogen exclusively doped carbon materials as efficient oxygen reduction electrocatalysts for Zn-air batteries. Appl Catal B Environ 261:118234. https://doi.org/10.1016/j.apcatb.2019.118234

    Article  CAS  Google Scholar 

  43. Aukstuolis A, Girtan M, Mousdis GA, Mallet R, Socol M, Rasheed M, Stanculescu A (2017) Measurement of charge carrier mobility in perovskite nanowire films by photo-celiv method. Proc Romanian Acad A 18:34–41

    Google Scholar 

  44. Liu L, Yang XF, Ma N, Liu HT, Xia YZ, Chen CM, Yang DJ, Yao XD (2016) Scalable and cost-effective synthesis of highly efficient Fe2N-based oxygen reduction catalyst derived from seaweed biomass. Small 12:1295–1301. https://doi.org/10.1002/smll.201503305

    Article  CAS  PubMed  Google Scholar 

  45. Ren W, Nie G, Zhou P, Zhang H, Duan XG, Wang SB (2020) The intrinsic nature of persulfate activation and N-doping in carbocatalysis. Environ Sci Technol 54:6438–6447. https://doi.org/10.1021/acs.est.0c01161

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Li HB, Kang WJ, Wang L, Yue QL, Xu SL, Wang HS, Liu JF (2013) Synthesis of three-dimensional flowerlike nitrogen-doped carbons by a copyrolysis route and the effect of nitrogen species on the electrocatalytic activity in oxygen reduction reaction. Carbon 54:249–257. https://doi.org/10.1016/j.carbon.2012.11.036

    Article  CAS  Google Scholar 

  47. Osmieri L, Escudero-Cid R, Videla AHAM, Ocón P, Specchia S (2017) Performance of a Fe-N-C catalyst for the oxygen reduction reaction in direct methanol fuel cell: Cathode formulation optimization and short-term durability. Appl Catal B-Environ 201:253–265. https://doi.org/10.1016/j.apcatb.2016.08.043

    Article  CAS  Google Scholar 

  48. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution. Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  49. Gharbi S, Dhahri R, Rasheed M, Dhahri E, Barille R, Rguiti M, Tozri A, Berber MR (2021) Effect of Bi substitution on nanostructural, morphologic, and electrical behavior of nanocrystalline La1–xBixNi0.5Ti0.5O3 (x = 0 and x = 0.2) for the electrical devices. Mater Sci Eng B 270:115191. https://doi.org/10.1016/j.mseb.2021.115191

    Article  CAS  Google Scholar 

  50. Xu JJ, Shi L, Wang JN, Lu SY, Wang YK, Gao GX, Ding SJ (2018) Hierarchical micro/mesoporous nitrogen-doped carbons derived from hypercrosslinked polymers for highly efficient oxygen reduction reaction. Carbon 138:348–356. https://doi.org/10.1016/j.carbon.2018.07.013

    Article  CAS  Google Scholar 

  51. Xu JH, Xia CL, Li M, Xiao R (2019) Porous nitrogen-doped carbons as effective catalysts for oxygen reduction reaction synthesized from cellulose and polyamide. ChemElectroChem 6:5735–5743. https://doi.org/10.1002/celc.201901763

    Article  CAS  Google Scholar 

  52. Zhang JT, Zhao ZH, Xia ZH, Dai LM (2015) A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 10:444–452. https://doi.org/10.1038/NNANO.2015.48

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Liu MX, Qian JS, Zhao YH, Zhu DZ, Gan LH, Chen LW (2015) Core-shell ultramicroporous@microporous carbon nanospheres as advanced supercapacitor electrodes. J Mater Chem A 3:11517–11526. https://doi.org/10.1039/C5TA02224J

    Article  CAS  Google Scholar 

  54. Yang XX, Li K, Cheng DM, Pang WL, Lv JQ, Chen XY, Zang HY, Wu XL, Tan HQ, Wang YH, Li YG (2018) Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J Mater Chem A 6:7762–7769. https://doi.org/10.1039/C8TA01078A

    Article  CAS  Google Scholar 

  55. Enneffatia M, Rasheed M, Louatia B, Guidaraa K, Barille R (2019) Morphology, UV-visible and ellipsometric studies of sodium lithium orthovanadate. Opt Quant Electron 51:299. https://doi.org/10.1007/s11082-019-2015-5

    Article  Google Scholar 

  56. Qin FF, Zuo PP, Li N, Qu SJ, Shen WZ (2022) 3D flower-like carbon spheres with hierarchical pore structure: an efficient asphaltene-based metal-free catalyst for ORR. Adv Mater Interfaces 9:2201157. https://doi.org/10.1002/admi.202201157

    Article  CAS  Google Scholar 

  57. Wohlgemuth SA, Vilela F, Titirici MM, Antonietti M (2012) A one-pot hydrothermal synthesis of tunable dual heteroatom-doped carbon microspheres. Green Chem 14:741. https://doi.org/10.1039/C2GC16415A

    Article  CAS  Google Scholar 

  58. Zhao L, Bacsik Z, Hedin N, Wei W, Sun YH, Markus Antonietti M, Titirici MM (2010) Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. Chemsuschem 3:840–845. https://doi.org/10.1002/cssc.201000044

    Article  CAS  PubMed  Google Scholar 

  59. Sun JT, Yang YK, Wang J, Lu B, Guo JJ (2021) Ammonia assisted regulation of nitrogen-type in carbonaceous support applied for oxygen reduction reaction. Appl Surf Sci 558:149958. https://doi.org/10.1016/j.apsusc.2021.149958

    Article  CAS  Google Scholar 

  60. Sun J, Liu X, Duan SX, Alsaedi A, Zhang FS, Hayat T, Li JX (2018) The influential factors towards graphene oxides removal by activated carbons: Activated functional groups vs BET surface area. J Mol Liq 271:142–150. https://doi.org/10.1016/j.molliq.2018.08.118

    Article  CAS  Google Scholar 

  61. Sneha M, Thornton JL, Lewis-Borrell L, Ryder ASH, Espley SG, Clark IP, Cresswell AJ, Grayson MN, Orr-Ewing AJ (2023) Photoredox-HAT catalysis for primary amine α-C-H alkylation: mechanistic insight with transient absorption spectroscopy. ACS Catal 13:8004–8013. https://doi.org/10.1021/acscatal.3c01474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hora NJ, Wahl BM, Soares C, Lara SA, Lanska JR, Phillips JA (2018) On the interactions of nitriles and fluoro-substituted pyridines with silicon tetrafluoride: computations and thin film IR spectroscopy. J Mol Struct 1157:679–692. https://doi.org/10.1016/j.molstruc.2017.12.039

    Article  ADS  CAS  Google Scholar 

  63. Peng XW, Zhang L, Chen ZX, Zhong LX, Zhao DK, Chi X, Zhao XX, Li LG, Lu XH, Leng K, Liu CB, Liu W, Tang W, Loh KP (2019) Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv Mater 31:1900341. https://doi.org/10.1002/adma.201900341

    Article  CAS  Google Scholar 

  64. Sun XJ, Zhang YW, Song P, Pan J, Zhuang L, Xu WL, Xing W (2013) Fluorine-doped carbon blacks: highly efficient metal-free electrocatalysts for oxygen reduction reaction. ACS Catal 3:1726–1729. https://doi.org/10.1021/cs400374k

    Article  CAS  Google Scholar 

  65. Zhan CH, Xu Y, Bu LZ, Zhu HZ, Feng YG, Yang T, Zhang Y, Yang ZQ, Huang BL, Qi Shao Q, Huang XQ (2021) Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nat Commun 12:6261. https://doi.org/10.1038/s41467-021-26425-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang F, Zhang DQ, Liu WQ, Li XJ, Chen QJ (2022) Fluorine enhanced pyridinic-N configuration as an ultra-active site for oxygen reduction reaction in both alkaline and acidic electrolytes. Carbon 187:67–77. https://doi.org/10.1016/j.carbon.2021.10.073

    Article  CAS  Google Scholar 

  67. Phoon BL, Yang TCK, Leo BF, Lai CW, Phang SW, Juan JC (2023) Mesoporous semi-ionic F-doped g-C3N4 as efficient photocatalyst for tetracycline removal under visible light. Environ Technol Inno 32:103303. https://doi.org/10.1016/j.eti.2023.103303

    Article  CAS  Google Scholar 

  68. Lee Y, Ahn JH, Park HY, Jung J, Jeon Y, Lee DG, Kim MH, Lee E, Kim C, Kwon Y, Lee HW, Jang JH, Lee JH, Song HK (2021) Support structure-catalyst electroactivity relation for oxygen reduction reaction on platinum supported by two-dimensional titanium carbide. Nano Energy 79:105363–105372. https://doi.org/10.1016/j.nanoen.2020.1053636

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was not supported by funds.

Author information

Authors and Affiliations

Authors

Contributions

FZ contributed to conceptualization, investigation, data curation, visualization, writing-original draft. HW contributed to investigation and supervision.

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 181 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Wang, H. Pyridinic N and semi-ionic F Co-functionalized biochar nanofibers as efficient metal-free electrocatalysts for oxygen reduction reaction. J Mater Sci 59, 3381–3393 (2024). https://doi.org/10.1007/s10853-024-09434-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09434-6

Navigation