Skip to main content
Log in

Capacitors and catalyst supports based on pyrolytic carbon deposited on metals/metal oxides derived from hydrotalcite-like materials

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of carbon deposits by the pyrolysis of acetonitrile at 600 and 700 °C with the assistance of metals/metal oxides generated in situ from MgCuAl and MgFeAl hydrotalcite-like materials (HTs) is described. The effects of the chemical composition of the supports on the quantity of carbon deposits and their structural ordering, morphology, nitrogen doping, porosity and capacitive properties, as well as their function as catalyst supports, were investigated. Among obtained pyrolytic carbons, that built of platelet-shaped carbon particles (formed at 600 °C with the use of MgCuAl HTs) appeared to be the most effective for charge storage (150 F g−1) as it contained mainly micropores (62%) and slit-shaped mesopores favouring the charge storage in deep parts of the carbon particles. It was revealed that the pyrolytic carbon exhibiting plate-like morphology with high exposure of edge plane surfaces and high specific surface area (1121 m2 g−1) provides the highest dispersion of 12-tungstophosphoric acid (HPW) and as a consequence leads to the highest yield (85%) to the main product (cis-2-butene) of n-butanol conversion achieved for HPW loaded on it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nocchetti M, Costantino U (2022) Progress in layered double hydroxides, from synthesis to new applications, 1st edn. World Scientific, Singapore

    Book  Google Scholar 

  2. Chaillot D, Bennici S, Brendlé J (2021) Layered double hydroxides and LDH-derived materials in chosen environmental applications: a review. Environ Sci Pollut Res 28:24375–24405

    Article  CAS  Google Scholar 

  3. Hamdani IR, Ahmad A, Chulliyil HM, Srinivasakannan C, Shoaibi AA, Hossain MM (2023) Thermocatalytic decomposition of methane: a review on carbon-based catalysts. ACS Omega 8:28945–28967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Halabi MH, de Croon MHJM, van der Schaaf J, Cobden PD, Schouten JC (2012) A novel catalyst—sorbent system for an efficient H2 production with in-situ CO2 capture. Int J Hydrogen Energy 37:4987–4996

    Article  CAS  Google Scholar 

  5. de Souza G, Ávila VC, Marcílio NR, Perez-Lopez OW (2012) Synthesis gas production by steam reforming of ethanol over M–Ni–Al hydrotalcite-type catalysts; M = Mg, Zn, Mo Co. Procedia Eng 42:1805–1815

    Article  Google Scholar 

  6. Fan Z, Weng W, Zhou J, Gu D, Xiao W (2021) Catalytic decomposition of methane to produce hydrogen: a review. J Energy Chem 58:415–430

    Article  CAS  Google Scholar 

  7. García-Sancho C, Guil-López R, Sebastián-López A, Navarro RM, Fierro JLG (2018) Hydrogen production by methane decomposition: a comparative study of supported and bulk ex-hydrotalcite mixed oxide catalysts with Ni, Mg and Al. Int J Hydrogen Energy 43:9607–9621

    Article  Google Scholar 

  8. Sikander U, Samsudin MF, Sufian S, KuShaari K, Kait CF, Naqvi SR, Chen W-H (2019) Tailored hydrotalcite-based Mg–Ni–Al catalysts for hydrogen production via methane decomposition: effect of nickel concentration and spinel-like structures. Int J Hydrogen Energy 44:14424–14433

    Article  CAS  Google Scholar 

  9. Zhao Y, Jiao Q, Li C, Liang J (2007) Catalytic synthesis of carbon nanostructures using layered double hydroxides as catalyst precursors. Carbon 42:2159–2163

    Article  Google Scholar 

  10. Zhao M-Q, Huang QJ-Q, Nie J-Q (2010) Layered double hydroxides as catalysts for the efficient growth of high quality single-walled carbon nanotubes in a fluidized bed reactor. Carbon 48:3260–3270

    Article  CAS  Google Scholar 

  11. Hao S, Qian L, Wu Q, Li D, Han F, Feng L, Xin L, Yang T, Wang S, Zhang J, He M (2022) Subnanometer single-walled carbon nanotube growth from Fe-containing layered double hydroxides. J Chem Eng 446:137087–137093

    Article  CAS  Google Scholar 

  12. Chida C, Aisawa S, Kumagi R, Sang J, Hirahara H, Kimura H, Futaba DN (2023) Synthesis of carbon nanotubes using layered double hydroxide with various metal compositions as catalyst precursors. Chem Lett 52:412–415

    Article  CAS  Google Scholar 

  13. Dupuis A-C (2005) The catalyst in the CCVD of carbon nanotubes—a review. Prog Mater Sci 50:929–961

    Article  CAS  Google Scholar 

  14. Jourdain V, Bichara C (2013) Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon 58:2–39

    Article  CAS  Google Scholar 

  15. Ooi PC, Xie M, Dee CF (2022) Enhanced carbon-based materials and their applications, 1st edn. Wiley-VCH, New York

    Google Scholar 

  16. Pacuła A, Drelinkiewicz A, Ruggiero-Mikołajczyk M, Pietrzyk P, Socha RP, Krzan M, Nattich-Rak M, Duraczyńska D, Bielańska E, Zimowska M (2022) N-doped carbon materials produced by CVD with the compounds derived from LDHs. J Mater Sci 57:18298–18322

    Article  ADS  Google Scholar 

  17. Yadav DK, Uma S, Nagrajan R (2022) Microwave-assisted synthesis of ternary Li–M–Al LDHs (M = Mg Co, Ni, Cu, Zn, and Cd) and examining their use in phenol oxidation. Appl Clay Sci 228:106655–106664. https://doi.org/10.1016/j.clay.2022.106655

    Article  CAS  Google Scholar 

  18. Wu Z, Gu Y-Y, Xin S, Lu L, Huang Z, Li M, Cui Y, Fu R, Wang S (2022) CuxNiyCo-LDH nanosheets on graphene oxide: an efficient and stable Fenton-like catalyst for dual-mechanism degradation of tetracycline. J Chem Eng 434:134574–134589

    Article  CAS  Google Scholar 

  19. Gu YL, Yang ZZ, Zhou JW, Fang QZ, Tan XF, Long QB (2024) Graphene/LDHs hybrid composites synthesis and application in environmental protection. Sep Purif Technol 328:125042–125060

    Article  CAS  Google Scholar 

  20. Li B, Tang J, Chen W, Hao G, Kurniawan N, Gu Z, Xu ZP (2018) Novel theranostic nanoplatform for complete mice tumour elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy. Biomaterials 177:40–51

    Article  CAS  PubMed  Google Scholar 

  21. Sun L, Wang J, Liu J, Li L, Xu ZP (2020) Creating structural defects of drug-free copper containing layered double hydroxide nanoparticles to synergize photothermal/photodynamic/chemodynamic cancer therapy. Small Struct 2:2000112–2000122

    Article  Google Scholar 

  22. Wang S, Yang S, Cui Z, Liu X, Yang Y, Wang T, Ma W, Zhou Y, Liang R, Yan D, Chen H (2023) In-situ activation of CuAl-LDH nanosheets to catalyse biorthogonal chemistry in vivo in tumor microenvironment for precise chemotherapy and chemodynamic therapy. J Chem Eng 457:141186–141195

    Article  CAS  Google Scholar 

  23. Van Everbroeck T, Wu J, Arenas-Esteban D, Ciocarlan R-G, Mertens M, Bals S, Dujardin C, Granger P, Seftel EM (2022) ZnAl layered double hydroxide based catalysts (with Cu, Mn, Ti) used as noble metal-free three-way catalysts. Appl Clay Sci 217:106390–106399

    Article  Google Scholar 

  24. Shi R, Wang Z, Zhao Y, Waterhouse GIN, Li Z, Zhang B, Sun Z, Xia C, Wang H, Zhang T (2021) Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat Catal 4:565–574

    Article  CAS  Google Scholar 

  25. Cheng X-B, Tian G-L, Liu X-F, Nie J-Q, Zhao M-Q, Huang J-Q, Zhu W, Hu L, Zhang Q, Wei F (2013) Robust growth of herringbone carbon nanofibers on layered double hydroxide derived catalysts and their applications as anodes for Li-ion batteries. Carbon 62:393–404

    Article  CAS  Google Scholar 

  26. Deck CP, Vecchio K (2006) Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 44:267–275

    Article  CAS  Google Scholar 

  27. Ivanov V, Nagy JB, Lambin Ph, Lucas A, Zhang XB, Zhang XF, Bernaerts D, Van Tendeloo G, Amelinckx S, Van Landuyt J (1994) The study of carbon nanotubes produced by catalytic method. Chem Phys Lett 223:329–335

    Article  ADS  CAS  Google Scholar 

  28. Dumbre D, Choudhary VR, Selvakannan PR (2016) Cu-Fe layered double hydroxide derived mixed metal oxide: environmentally benign catalyst for Ullman coupling of aryl halides. Polyhedron 120:180–184

    Article  CAS  Google Scholar 

  29. Dupont P, Védrine JC, Paumard E, Hecquet G, Lefebvre F (1995) Heteropolyacids supported on activated carbon as catalysts for the esterification of acrylic acid by butanol. Appl Catal A 129:217–227

    Article  CAS  Google Scholar 

  30. Liu-Cai FX, Sahut B, Faydi E, Auroux A, Hervé G (1999) Study of the acidity of carbon supported and unsupported heteropolyacid catalysts by ammonia sorption microcalorimetry. Appl Catal A 185:75–83

    Article  CAS  Google Scholar 

  31. Lapkin A, Bozkaya B, Mays T, Borello L, Edler K, Crittenden B (2003) Preparation and characterisation of chemisorbents based on heteropolyacids supported on synthetic mesoporous carbons and silica. Catal Today 81:611–621

    Article  CAS  Google Scholar 

  32. Kirpsza A, Lalik E, Mordarski G, Micek-Ilnicka A (2018) Catalytic properties of carbon nanotubes-supported heteropolyacids in isopropanol conversion. Appl Catal A 549:254–262

    Article  CAS  Google Scholar 

  33. Conesa JM, Morales MV, García-Bosch N, Rodríguez Ramos I, Guerrero-Ruiz A (2023) Graphite supported heteropolyacid as a regenerable catalyst in the dehydration of 1-butanol to butenes. Catal Today 420:114017–114028

    Article  CAS  Google Scholar 

  34. Pacuła A, Ikeda K, Masuda T, Uosaki K (2012) Examination of the electroactive composites containing cobalt nanoclusters and nitrogen-doped nanostructured carbon as electrocatalysts for oxygen reduction reaction. J Power Sources 220:20–30

    Article  Google Scholar 

  35. Pacuła A, Socha RP, Zimowska M, Ruggiero-Mikołajczyk M, Mucha D, Nowak P (2013) Application of as-synthesized Co–Al layered double hydroxides for the preparation of the electroactive composites containing N-doped carbon nanotubes. Appl Clay Sci 72:163–174

    Article  Google Scholar 

  36. Pacuła A, Nowak P, Socha RP, Ruggiero-Mikołajczyk M, Mucha D, Bielańska E (2013) Preparation and characterization of the electroactive composites containing nickel nanoparticles and carbon nanotubes. Electrochim Acta 90:563–572

    Article  Google Scholar 

  37. Pacuła A, Nowak P, Makowski W, Socha RP (2015) The influence of layered double hydroxide composition on the morphology, porosity and capacitive properties of nitrogen-doped carbon materials prepared via chemical vapour decomposition. Micropor Mesopor Mater 201:1–9

    Article  Google Scholar 

  38. Pacuła A, Uosaki K, Socha RP, Bielańska E, Pietrzyk P, Zimowska M (2016) Nitrogen-doped carbon materials derived from acetonitrile and Mg–Co–Al layered double hydroxides as electrocatalysts for oxygen reduction reaction. Electrochim Acta 212:47–58

    Article  Google Scholar 

  39. Pacuła A, Socha RP, Pietrzyk P, Zimowska M, Ruggiero-Mikołaczyk M, Mucha D, Kosydar R, Mordarski G (2018) Physicochemical and electrochemical properties of the carbon materials containing nitrogen and cobalt derived from acetonitrile and Co–Al layered double hydroxides. J Mater Sci 53(16):11292–11314. https://doi.org/10.1007/s10853-018-2427-9

    Article  ADS  CAS  Google Scholar 

  40. Xiang X, Zhang L, Hima HI, Li F, Evans DG (2009) Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes. Appl Clay Sci 42:405–409

    Article  CAS  Google Scholar 

  41. Cao Y, Zhao Y, Jiao Q (2010) Fe-based catalysts from Mg/Fe layered double hydroxides for preparation of N-doped carbon nanotubes. Mater Chem Phys 122:612–616

    Article  CAS  Google Scholar 

  42. Pacuła A, Mokaya R (2007) Layered double hydroxides as templates for nanocasting porous N-doped graphitic carbons via chemical vapour deposition. Micropor Mesopor Mater 106:147–154

    Article  Google Scholar 

  43. Valente JS, Hernandez-Cortez J, Cantu MS, Ferrat G, López-Salinas E (2010) Calcined layered double hydroxides Mg–Me–Al (Me: Cu, Fe, Ni, Zn) as bifunctional catalysts. Catal Today 150:340–345

    Article  CAS  Google Scholar 

  44. Zhang S, Fan G, Zhang C, Li F (2012) One-step synthesis of carbon nanotubes-copper composites for fabricating catalyst supports of methanol electrooxidation. Mat Chem Phys 135:137–143

    Article  CAS  Google Scholar 

  45. Huang L, Megías-Sayago C, Bingre R, Zheng Q, Wang Q, Louis B (2019) Catalytic performance of layered double hydroxides (LDHs) derived materials in gas-solid and liquid-solid phase reactions. ChemCatChem 11:3279–3286

    Article  CAS  Google Scholar 

  46. High M, Patzschke CF, Zheng L, Zeng D, Gavalda-Diaz O, Ding N, Horace Chien KH, Zhang Z, Wilson GE, Berenov AV, Skinner SJ, Sedransk Campbell KL, Xiao R, Fennell PS, Song Q (2022) Precursor engineering of hydrotalcite-derived redox sorbents for reversible and stable thermochemical oxygen storage. Nat Commun 13:5109–5122

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Goldstein EA, Mitchell RE (2011) Chemical kinetics of copper oxide reduction with carbon monoxide. Proc Combust Inst 33(2):2803–2810

    Article  CAS  Google Scholar 

  48. Fruehan RJ (1977) The rate of reduction of iron oxides with carbon. Metall Trans B 8:279–286

    Article  Google Scholar 

  49. Britt PF (2002) Pyrolysis and combustion of acetonitrile (CH3CN), Technical report ORNL/TM-2002/113

  50. Valente JS, Lima E, Toledo-Antonio JA, Cortes-Jacome MA, Lartundo-Rojas L, Montiel R, Prince J (2010) Comprehending the thermal decomposition and reconstruction process of sol-gel MgAl layered double hydroxides. J Phys Chem C 114:2089–2099

    Article  CAS  Google Scholar 

  51. van Langeveld AD, van Delft FCMJM, Ponec V (1983) Formation of a carbonaceous adsorbate layer on the surface of Pt–Cu alloys. Sur Sci 134:665–674

    Article  ADS  CAS  Google Scholar 

  52. Baker RTK, Harris PS, Thomas RB, Waite RJ (1973) Formation of Filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene. J Catal 30:86–95

    Article  CAS  Google Scholar 

  53. Baker RTK (1986) Catalytic growth of carbon filaments. Carbon 27:315–323

    Article  Google Scholar 

  54. Krishnankutty N, Rodriguez NM, Baker RTK (1996) Effect of copper on the decomposition of ethylene over an iron catalyst. J Catal 158:217–227

    Article  CAS  Google Scholar 

  55. Zhao Y, Jiao Q, Li C, Liang J (2007) Catalytic synthesis of carbon nanostructures using layered double hydroxides as catalyst precursors. Carbon 45:2159–2163

    Article  CAS  Google Scholar 

  56. Chuang SY, Dennis JS, Hayhurst AN, Scott SA (2008) Development and performance of Cu-based oxygen carriers for chemical-looping combustion. Combust Flame 154:109–121

    Article  ADS  CAS  Google Scholar 

  57. Ge L, Wu Y, Wang F, Huang Y (2021) Algae-derived nitrogen self-doped porous carbon materials with high supercapacitor performances. Energy Fuels 35:15118–15125

    Article  CAS  Google Scholar 

  58. Biddinger EJ, Ozkan US (2010) Role of graphitic edge plane exposure in carbon nanostructures for oxygen reduction reaction. J Phys Chem C 114:15306–15314

    Article  CAS  Google Scholar 

  59. Sjöström H, Stafström S, Boman M, Sundgren J-E (1995) Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys Rev Lett 75:1336–1339

    Article  ADS  PubMed  Google Scholar 

  60. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43:1731–1742

    Article  CAS  Google Scholar 

  61. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  62. Kado Y, Soneda Y (2019) Preparation of porous carbons by templating method using Mg hydroxide for supercapacitors. Micropor Mesopor Mater 287:101–106

    Article  CAS  Google Scholar 

  63. Torchała K, Kierzek K, Machnikowski J (2012) Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes. Electrochim Acta 86:260–267

    Article  Google Scholar 

  64. Hsieh W, Allen Horng T-L, Huang H-C, Teng H (2015) Facile simulation of carbon with wide pore size distribution for electric double-layer capacitance based on Helmholtz models. J Mater Chem A 3:16535–16543

    Article  CAS  Google Scholar 

  65. Liu H, Zhang Y, Ke Q, Ho KH, Hu Y, Wang J (2013) Tuning the porous texture and specific surface area of nanoporous carbons for supercapacitor electrodes by adjusting the hydrothermal synthesis temperature. J Mater Chem A 1:12962–12970

    Article  CAS  Google Scholar 

  66. Zhang LL, Gu Y, Zhao XS (2013) Advanced porous carbon electrodes for electrochemical capacitors. J Mater Chem A 1:9395–9408

    Article  CAS  Google Scholar 

  67. Feng G, Qiao R, Huang J, Sumpter BG, Meunier V (2010) Ion Distribution in electrified micropores and its role in the anomalous enhancement of capacitance. ACS Nano 4:2382–2390

    Article  CAS  PubMed  Google Scholar 

  68. Olejniczak A, Leżańska M, Pacuła A, Nowak P, Włoch J, Łukaszewicz JP (2015) Nitrogen-containing mesoporous carbons with high capacitive properties derived from a gelatin biomolecule. Carbon 91:200–214

    Article  CAS  Google Scholar 

  69. Zhang W, Bu S, Yuan Q, Xu Q, Hu M (2019) Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. J Mater Chem A 7:647–656

    Article  Google Scholar 

  70. Kaba MS, Song IK, Duncan DC, Hill CK, Barteau MA (1998) Molecular shapes, orientation, and packing of polyoxometalate arrays images by scanning tunneling microscopy. Inorg Chem 37:398–406

    Article  CAS  PubMed  Google Scholar 

  71. Obalı Z, Doğu T (2008) Activated carbon-tungstophosphoric acid catalysts for the synthesis of tert-amyl ethyl ether (TAEE). Chem Eng J 138:548–555

    Article  Google Scholar 

  72. Richard F, Célérier S, Vilette M, Comparot J-D, Montouillout V (2014) Alkylation of thiophenic compounds over heteropoly acid H3PW12O40 supported on MgF2. Appl Catal B 152153:241–249

    Article  Google Scholar 

  73. Pacuła A, Pamin K, Zięba A, Kryściak-Czerwenka J, Olejniczak Z, Serwicka EM, Drelinkiewicz A (2014) Physicochemical and catalytic properties of montmorillonites modified with 12-tungstophoshoric acid. Appl Clay Sci 95:220–231

    Article  Google Scholar 

  74. Bielański A, Lubańska A, Poźniczek J, Micek-Ilnicka A (2003) Oxide supports for 12-tungstosilicic acid catalysts in gas phase synthesis of MTBE. Appl Catal A 238:239–250

    Article  Google Scholar 

  75. Pizzio LR, Cáceres CV, Blanco MN (1998) Acid catalysts prepared by impregnation of tungstophosphoric acid solutions on different supports. Appl Catal A 167:283–294

    Article  CAS  Google Scholar 

  76. Saito Y, Cook PN, Niyama H, Echigoya E (1985) Dehydration of alcohols on/in heteropoly compounds. J Catal 95:49–46

    Article  CAS  Google Scholar 

  77. Macht J, Janik MJ, Neurock M, Iglesia E (2007) Catalytic consequences of composition in polyoxometalate clusters with Keggin structure. Angew Chem Int Ed 46:7864–7868

    Article  CAS  Google Scholar 

  78. Delsarte S, Grange P (2004) Butan-1-ol and nutan-2-ol dehydration on nitrided aluminophosphates: influence of nitridation on reaction pathways. Appl Catal A 259:269–279

    Article  CAS  Google Scholar 

  79. Okuhara T, Mizuno N, Misono M (1996) Catalytic chemistry of heteropoly compounds. Adv Catal 41:113–252

    Article  CAS  Google Scholar 

  80. Hayashi H, Moffat JB (1982) The properties of heteropoly acids and the conversion of methanol to hydrocarbons. J Catal 77:473–484

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research received funding from National Centre for Research and Development (NCBiR, Poland), agreement number EIG CONCERT-JAPAN/1/2019.

Author information

Authors and Affiliations

Authors

Contributions

AP contributed to conception, experimental design, carried out synthesis of the HTs, the composites, the carbon materials and XRD measurements and performed analysis and interpretation of the data obtained by various methods/techniques and manuscript composition. JG carried out XPS measurements. AM-I was involved in conception, carried out preparation of HPW-containing catalysts and measurements via FT-IR spectroscopy and performed catalytic tests. PP carried out measurements via Raman spectroscopy. MR-M carried out nitrogen sorption measurements. BDN carried out nitrogen sorption measurements. DD carried out measurements by means of SEM. GC carried out measurements by means of STEM.

Corresponding author

Correspondence to Aleksandra Pacuła.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data and code availability

Not applicable.

Supplementary information

Details of the measurements (XRD, EA, N2 sorption, Raman, FT-IR, XPS, SEM, EDS, TEM) are provided. Additional graphs and micrographs include: XRD patterns of the HTs, the composites, the carbon materials, H3PW12O40·19H2O (HPW) and HPW deposited on the carbon materials; the stick patterns for references: MgO (PDF 00-045-0946), Cu (PDF 04-009-2090), graphite (PDF 040-014-0362), H3PW12O40·6H2O (PDF 00-050-0304) and H3PW12O40·14H2O (PDF 00-050-0656); SEM, BF-STEM and HAADT-STEM images of the carbon materials; the Raman spectra of the carbon materials and their fittings with D1, D2, D3, D4 and G components; nitrogen sorption isotherms of the carbon materials; CV curves recorded for the carbon materials deposited on glassy carbon electrode; BSE micrographs of HPW deposited on the carbon materials; FT-IR and XPS spectra of unsupported HPW and HPW deposited on the carbon materials; the comparison of PSD, pore volume and specific surface area for the carbon materials and the catalysts; and selectivity profiles for pure HPW and HPW deposited on various carbon materials in catalytic conversion of n-butanol. The data on physicochemical features of additional carbon materials: C-MgMnAl-600 and C-MgMnAl-700, determined by elemental analysis, Raman spectroscopy, nitrogen sorption are also provided. The parameters of W 4f7/2 line determined by XPS for HPW and the catalysts containing HPW deposited on various carbon materials are listed.

Ethical approval

Not applicable.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5451 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacuła, A., Gurgul, J., Micek-Ilnicka, A. et al. Capacitors and catalyst supports based on pyrolytic carbon deposited on metals/metal oxides derived from hydrotalcite-like materials. J Mater Sci 59, 2788–2813 (2024). https://doi.org/10.1007/s10853-024-09361-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09361-6

Navigation