Skip to main content
Log in

Synthesis and Thermal Treatment of Pd-Cr@Carbon for Efficient Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

A nanostructured Pd-Cr catalyst was deposited on a supported carbon surface using the modified borohydride reduction method for the oxygen reduction reaction (ORR) to be utilized as an efficient catalyst in the proton-exchange membrane fuel cell. The crystal structure and feature nanostructure of the Pd-Cr@carbon were established through the use of X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). Meanwhile, its catalytic activity was studied using the cyclic voltammetry and electrochemical polarization techniques. Based on the XRD analysis, it was observed that the Pd phase with the fcc crystal structure was dominant, while the Pd-Cr phase with tetragonal crystal structure was detected only for the as-prepared sample and samples calcined at 573 K. The estimated average crystallite size of the Pd phase increased from 9.66 to 37.54 nm as the calcination temperature increased to 973 K, and the calcination time had a slight effect on the crystallite size. On the other side, the average crystallite size for the formed Pd-Cr phase slightly increased from 43.74 nm for the as-prepared sample to 44.90 nm for the sample calcined at 573 K for 3 h. The TEM examination revealed the uniform distribution of the Pd and Pd-Cr nanoparticles upon the carbon surface. The calcination temperature and time played an important role in controlling the structural and morphology parameters of Pd-Cr@carbon. The adsorption/desorption potentials were found to be dependent on the calcination temperature and time and hence the particle and crystallite sizes. The optimum ORR activity and chemical stability were observed for samples calcined at 773 K for 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.W. Zhang, B. Zhang, X. Zhang, J. Solid State Electr. 21, 447 (2017)

    Article  CAS  Google Scholar 

  2. B.I. Podlovchenko, V.V. Kuznetsov, R.S. Batalov, J. Solid State Electr. 20, 589 (2016)

    Article  CAS  Google Scholar 

  3. T. Jiang, Q. Huai, T. Geng, W. Ying, T. Xiao, F. Cao, Biomass Bioenerg. 78, 71 (2015)

    Article  CAS  Google Scholar 

  4. M.D. Obradović, Z.M. Stančić, U.Č Lačnjevac, V.V. Radmilović, A.G. Wohlmuther, V.R. Radmilović, S.L. Gojković, Appl. Catal. B-Environ. 189, 110 (2016)

    Article  Google Scholar 

  5. G. Emir, Y. Dilgin, A. Ramanaviciene, A. Ramanavicius, Microchem. J. 161, 105751 (2021)

    Article  CAS  Google Scholar 

  6. N. German, A. Ramanavicius, J. Voronovic, Y. Oztekin, A. Ramanaviciene, Microchim. Acta 172, 185 (2011)

    Article  CAS  Google Scholar 

  7. V.P. Tolstoy, M.V. Kaneva, A.A. Lobinsky, A.V. Koroleva, J. Alloy. Compd. 834, 155205 (2020)

    Article  CAS  Google Scholar 

  8. V.P. Tolstoy, A.A. Lobinsky, M.V. Kaneva, J. Mol. Liq. 282, 32 (2019)

    Article  CAS  Google Scholar 

  9. A.A. Lobinsky, V.P. Tolstoy, J. Solid State Chem. 270, 156 (2019)

    Article  CAS  Google Scholar 

  10. D.S. Dmitriev, N.A. Khristyuk, V.I. Popkov, J. Alloy. Compd. 849, 156625 (2020)

    Article  CAS  Google Scholar 

  11. M.I. Chebanenko, K.D. Martinson IV., V.I.P. Matsukevich, Nanosyst. Phys. Chem. Math. 11, 474 (2020). https://doi.org/10.17586/2220-8054-2020-11-4-474-479

    Article  CAS  Google Scholar 

  12. D.S. Dmitriev, V.I. Popkov, Nanosyst.: Phys. Chem. Math. 10, 480 (2019). https://doi.org/10.17586/2220-8054-2019-10-4-480-487

    Article  CAS  Google Scholar 

  13. M. Shao, A. Peles, K. Shoemaker, Nano Lett. 11, 3714 (2011)

    Article  CAS  Google Scholar 

  14. J. Xiao, Q. Kuang, S. Yang, F. Xiao, S. Wang, L. Guo, Sci. Rep. UK 3, 2300 (2013)

    Article  Google Scholar 

  15. C.C.R. Cruz, N.P. da Silva, A.V. Castilho, V.A. Favre-Nicolin, C.L. Cesar, H.R.B. Orlande, D.S. Dos Santos, Sci. Rep. UK 10, 17561 (2020)

    Article  CAS  Google Scholar 

  16. L. Zhang, Y. Guo, A. Iqbal, B. Li, M. Deng, D. Gong, W. Liu, W. Qin, J. Nanopart. Res. 19, 150 (2017)

    Article  Google Scholar 

  17. S.M.S. Hussain, M.S. Kamal, M.K. Hossain, J. Nanomater. (2019). https://doi.org/10.1155/2019/1562130

    Article  Google Scholar 

  18. H. Duan, C. Xu, Phys. Chem. Chem. Phys. 18, 4166 (2016)

    Article  CAS  Google Scholar 

  19. O.Z. Sharaf, M.F. Orhan, Renew. Sustain. Energy Rev. 32, 810 (2014)

    Article  CAS  Google Scholar 

  20. H. Meng, D. Zeng, F. Xie, Catalysts 5, 1221 (2015)

    Article  CAS  Google Scholar 

  21. C. Du, M. Chen, W. Wang, G. Yin, P. Shi, Electrochem. Commun. 12, 843 (2010)

    Article  CAS  Google Scholar 

  22. C. Xu, Y. Liu, Q. Hao, H. Duan, J. Mater. Chem. A 1, 13542 (2013)

    Article  CAS  Google Scholar 

  23. EF Abo Zeid, DS Kim, HS Lee, YT Kim (2010) J. Appl. Electrochem. 40: 1917

  24. Y. Wang, K. Jiang, W.B. Cai, Electrochim. Acta 162, 100 (2015)

    Article  CAS  Google Scholar 

  25. J.C. Calderón, M.R. Ráfales, M.J. Nieto-Monge, J.I. Pardo, R. Moliner, M.J. Lázaro, Nanomaterials 6, 187 (2016)

    Article  Google Scholar 

  26. Q. Zhang, Y. Li, R. Chai, G. Zhao, Y. Liu, Y. Lu, Appl. Catal. B-Environ. 187, 238 (2016)

    Article  CAS  Google Scholar 

  27. P. Yu, H. Jiang, R. Peng, H. Ma, R. Zheng, J.Z. Zhang, G.G. Botte, J. Power Sources 483, 229175 (2021)

    Article  CAS  Google Scholar 

  28. F.C. Lizana, S.G. Quero, C. Amorim, M.A. Keane, Appl. Catal. A-Gen. 473, 41 (2014)

    Article  Google Scholar 

  29. X. Zhang, J. Fan, M. Han, S. Zhao, L. Lu, D. Xu, Y. Lin, N. Shi, Y. Liu, Y.Q. Lan, J. Bao, ChemCatChem 12, 4138 (2020)

    Article  CAS  Google Scholar 

  30. E.F. Abo Zeid, I.A. Ibrahem, Mater. Renew. Sustain. Energy 6, 19 (2017)

    Article  Google Scholar 

  31. Y.J. Wang, N. Zhao, B. Fang, H. Li, X.T. Bi, H. Wang, Chem. Rev. 115, 3433 (2015)

    Article  CAS  Google Scholar 

  32. EF Abo Zeid, YT Kim (2015) Am. J. Nano Res. Appl. 3: 71

  33. L. Dai, Y. Xue, L. Qu, H.J. Choi, J.B. Baek, Chem. Rev. 115, 4823 (2015)

    Article  CAS  Google Scholar 

  34. R.M. Waterstrat, J. Less Common. Met. 80, P31 (1981)

    Article  CAS  Google Scholar 

  35. C. Zhang, W. Sandorf, Z. Peng, ACS Catal. 5, 2296 (2015)

    Article  CAS  Google Scholar 

  36. U. Holzwarth, N. Gibson, Nat. Nanotechnol. 6, 534 (2011)

    Article  CAS  Google Scholar 

  37. T. Liu, H. Liu, F. Ju, H. Wang, Y. Wang, W. Li, Russ. J. Phys. Chem. A 91, 2283 (2017)

    Article  CAS  Google Scholar 

  38. K. Hassan, T.T. Tung, P.L. Yap, M.J. Nine, H.C. Kim, D. Losic, Anal. Chim. Acta 1138, 49 (2020)

    Article  CAS  Google Scholar 

  39. Y. Wang, P.B. Balbuena, J. Phys. Chem. B 109, 18902 (2005)

    Article  CAS  Google Scholar 

  40. L. Khotseng, Oxygen reduction reaction in electrocatalysts for fuel cells and hydrogen evolution theory to design. Intech Open (2018). https://doi.org/10.5772/intechopen.79098

    Article  Google Scholar 

  41. Y. Wang, E. Song, W. Qiu, X. Zhao, Y. Zhou, J. Liu, W. Zhang, Prog. Nat. Sci. Mater. 29, 256 (2019)

    Article  CAS  Google Scholar 

  42. P. Veerakumar, K.C. Lin, Chemosphere 253, 126750 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research group extend their appreciation to the Deputyship for Research & Innovation (DRI), Ministry of Education in Saudi Arabia for funding this work through the Grant Number “375213500”. Also, the authors would like to extend their sincere appreciation to the central laboratory at Jouf University for support this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebed, A.M., Zeid, E.F.A. & Abd-Elnaiem, A.M. Synthesis and Thermal Treatment of Pd-Cr@Carbon for Efficient Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. J Inorg Organomet Polym 31, 3772–3779 (2021). https://doi.org/10.1007/s10904-021-01991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01991-6

Keywords

Navigation