Skip to main content
Log in

Flexible sandwich-structured MXene@CNT/SA@MXene film with high electromagnetic shielding performance

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The composite films with flexible and high electromagnetic-shielding (EMI) performance have been attracting more and more attention. Herein, using MXene as an interlayer and carbon nanotube/sodium alginate (CNT/SA) as a core layer, a flexible and high EMI MXene@CNT/SA@MXene (MCS) film with a sandwich structure was successfully prepared via alternating vacuum filtration. The optimal MCS film was obtained with a MXene dosage of 15 mg, a CNT/SA dosage of 6 mg and a CNT:SA mass ratio of 6:4. The thickness of the MCS film had a linear relation with the MXene and CNT/SA dosages. The best MCS film was 12 μm thick and exhibited an EMI total electromagnetic wave efficiency (SET) of 61.3 dB, SSE/t of 2.34 × 105 dB cm2 g−1 and conductivity of 1.74 × 105 S m−1. The breaking strength, breaking elongation and toughness of MCS film increased by 24.3%, 16.7%, and 40.0% in comparison with pure MXene film, and by 40.3%, 40.0%, and 100% in comparison with MXene/CNT/SA blend film, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhou B, Zhang Z, Li YL et al (2020) Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl Mater Interface 12:4895–4905. https://doi.org/10.1021/acsami.9b19768

    Article  CAS  Google Scholar 

  2. Wei QW, Pei SF, Qian XT et al (2020) Superhigh electromagnetic interference shielding of ultrathin aligned pristine graphene nanosheets film. Adv Mater 32:1907411. https://doi.org/10.1002/adma.201907411

    Article  CAS  Google Scholar 

  3. Bai SC, Guo XZ, Zhang XY et al (2021) Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos Part A Appl Sci Manuf 149:106545. https://doi.org/10.1016/j.compositesa.2021.106545

    Article  CAS  Google Scholar 

  4. Cao LY, Liu YS, Wang J et al (2020) Multi-functional properties of MCNT/PVA buckypapers fabricated by vacuum filtration combined with hot press: thermal, electrical and electromagnetic shielding. Nanomater 10:2503. https://doi.org/10.3390/nano10122503

    Article  CAS  Google Scholar 

  5. Lipton J, Weng GM, Alhabeb M et al (2019) Mechanically strong and electrically conductive multilayer MXene nanocomposites. Nanoscale 11:20295–20300. https://doi.org/10.1039/c9nr06015d

    Article  CAS  PubMed  Google Scholar 

  6. Kim J, Kim G, Kim SY et al (2021) Fabrication of highly flexible electromagnetic interference shielding polyimide carbon black composite using hot-pressing method. Compos Part B: Eng 221:109010. https://doi.org/10.1016/j.compositesb.2021.109010

    Article  CAS  Google Scholar 

  7. Wu HY, Jia LC, Yan DX et al (2018) Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos Sci Technol 156:87–94. https://doi.org/10.1016/j.compscitech.2017.12.027

    Article  CAS  Google Scholar 

  8. Lee SH, Yu S, Shahzad F et al (2019) Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction. Compos Sci Technol 182:107778. https://doi.org/10.1016/j.compscitech.2019.107778

    Article  CAS  Google Scholar 

  9. Chen Y, Li JZ, Li T et al (2021) Recent advances in graphene-based films for electromagnetic interference shielding: review and future prospects. Carbon 180:163–184. https://doi.org/10.1016/j.carbon.2021.04.091

    Article  CAS  Google Scholar 

  10. Bora PJ, Anil AG, Vinoy KJ et al (2019) Outstanding absolute electromagnetic interference shielding effectiveness of cross-linked PEDOT: PSS film. Adv Mater Interface 6:1901353. https://doi.org/10.1002/admi.201901353

    Article  CAS  Google Scholar 

  11. Wang YQ, Liu RT, Zhang JF et al (2021) Vulcanization of Ti3C2Tx MXene/natural rubber composite films for enhanced electromagnetic interference shielding. Appl Surf Sci 546:149143. https://doi.org/10.1016/j.apsusc.2021.149143

    Article  CAS  Google Scholar 

  12. Guo HT, Shi YY, Pan F et al (2023) Tough, stretchable dual-network liquid metal-based hydrogel toward high-performance intelligent on-off electromagnetic interference shielding, human motion detection and self-powered application. Nano Energ 114:108678. https://doi.org/10.1016/j.nanoen.2023.108678

    Article  CAS  Google Scholar 

  13. Wei HW, Zheng WH, Jiang ZX et al (2019) CNT coatings grown on the outer and inner surfaces of magnetic hollow carbon fibers with enhanced electromagnetic interference shielding performance. J Mater Chem C 7:14375–14383. https://doi.org/10.1039/C9TC04485J

    Article  CAS  Google Scholar 

  14. Wang M, Tang XH, Cai JH et al (2021) Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177:377–402. https://doi.org/10.1016/j.carbon.2021.02.047

    Article  CAS  Google Scholar 

  15. Li B, Wu N, Yang YF et al (2023) Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv Funct Mater 33:2213357. https://doi.org/10.1002/adfm.202213357

    Article  CAS  Google Scholar 

  16. Xing YQ, Wan YZ, Wu Z et al (2023) Multilayer ultrathin MXene@ AgNW@MoS2 composite film for high-efficiency electromagnetic shielding. ACS Appl Mater Interface 15:5787–5797. https://doi.org/10.1021/acsami.2c18759

    Article  CAS  Google Scholar 

  17. Iqbal A, Sambyal P, Koo CM (2020) 2D MXenes for electromagnetic shielding: a review. Adv Funct Mater 30:2000883. https://doi.org/10.1002/adfm.202000883

    Article  CAS  Google Scholar 

  18. Shahzad F, Alhabeb M, Hatter CB et al (2016) Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Sci 353:1137–1140. https://doi.org/10.1126/science.aag2421

    Article  ADS  CAS  Google Scholar 

  19. Shahzad F, Iqbal A, Kim H et al (2020) 2D transition metal carbides (MXenes): applications as an electrically conducting material. Adv Mater 32:2002159. https://doi.org/10.1002/adma.202002159

    Article  CAS  Google Scholar 

  20. Wu N, Yang YF, Wang CX et al (2023) Ultrathin cellulose nanofiber assisted ambientpPressure-dried, ultralight, mechanically robust, multifunctional MXene aerogels. Adv Mater 35:2207969. https://doi.org/10.1002/adma.202207969

    Article  CAS  Google Scholar 

  21. Li B, Yang YF, Wu N et al (2022) Bicontinuous, high-strength, and multifunctional chemical-cross-linked MXene/superaligned carbon nanotube film. ACS Nano 16:19293–19304. https://doi.org/10.1021/acsnano.2c08678

    Article  CAS  PubMed  Google Scholar 

  22. Guo X, Wang Y, Qin YM et al (2020) Structures, properties and application of alginic acid: a review. Int J Biol Macromol 162:618–628. https://doi.org/10.1016/j.ijbiomac.2020.06.180

    Article  CAS  PubMed  Google Scholar 

  23. Wang SJ, Li DS, Meng WJ et al (2022) Scalable, superelastic, and superhydrophobic MXene/silver nanowire/melamine hybrid sponges for high-performance electromagnetic interference shielding. J Mater Chem C 10:5336–5344. https://doi.org/10.1039/d2tc00516f

    Article  CAS  Google Scholar 

  24. Lv GX, Wang J, Shi ZW et al (2018) Intercalation and delamination of two-dimensional MXene (Ti3C2Tx) and application in sodium-ion batteries. Mater Lett 219:45–50. https://doi.org/10.1016/j.matlet.2018.02.016

    Article  CAS  Google Scholar 

  25. Li XY, Jin YH, Wang LL et al (2023) Fabrication of flexible and durable functional fabric with high electromagnetic shielding performances based on MXene. J Ind Text 53:1–16. https://doi.org/10.1177/15280837231170325

    Article  CAS  Google Scholar 

  26. Zou GD, Zhang ZW, Guo JX et al (2016) Synthesis of MXene/Ag composites for extraordinary long cycle lifetime lithium storage at high rates. ACS Appl Mater Interface 8:22280–22286. https://doi.org/10.1021/acsami.6b08089

    Article  CAS  Google Scholar 

  27. Tong RP, Ma ZH, Gu P et al (2023) Stretchable and sensitive sodium alginate ionic hydrogel fibers for flexible strain sensors. Int J Biol Macromol 246:125683. https://doi.org/10.1016/j.ijbiomac.2023.125683

    Article  CAS  PubMed  Google Scholar 

  28. Xing D, Lu LS, Teh KS et al (2018) Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon 132:32–41. https://doi.org/10.1016/j.carbon.2018.02.001

    Article  CAS  Google Scholar 

  29. Ma JJ, Wang K, Zhan MS (2015) A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foam. Rsc Adv 5:65283–65296. https://doi.org/10.1039/c5ra09507g

    Article  ADS  CAS  Google Scholar 

  30. Song WL, Guan XT, Fan LZ et al (2015) Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93:151–160. https://doi.org/10.1016/j.carbon.2015.05.033

    Article  CAS  Google Scholar 

  31. Liu QZ, He XW, Yi C et al (2020) Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Compos Part B Eng 182:107614. https://doi.org/10.1016/j.compositesb.2019.107614

    Article  CAS  Google Scholar 

  32. Zhang HR, Sun XW, Heng ZG (2018) Robust and flexible cellulose nanofiber/multiwalled carbon nanotube film for high-performance electromagnetic interference shielding. Ind Eng Chem Res 57:17152–17160. https://doi.org/10.1021/acs.iecr.8b04573

    Article  CAS  Google Scholar 

  33. Li Y, Pei XL, Shen B et al (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. Rsc Adv 5:24342–24351. https://doi.org/10.1039/c4ra16421k

    Article  ADS  CAS  Google Scholar 

  34. Fan MS, Chen R, Lu YZ et al (2022) Flexible microfibrillated cellulose/carbon nanotube multilayered composite films with electromagnetic interference shielding and thermal conductivity. Compos Commun 35:101293. https://doi.org/10.1016/j.coco.2022.101293

    Article  Google Scholar 

  35. Song WL, Fan LZ, Cao MS et al (2014) Facile fabrication of ultrathin graphene papers for effective electromagnetic shielding. J Mater Chem C 2:5057–5064. https://doi.org/10.1039/c4tc00517a

    Article  CAS  Google Scholar 

  36. Agnihotri N, Chakrabarti K, De A (2015) Highly efficient electromagnetic interference shielding using graphite nanoplatelet/poly (3, 4-ethylenedioxythiophene)–poly (styrenesulfonate) composites with enhanced thermal conductivity. RSC Adv 5:43765–43771. https://doi.org/10.1039/c4ra15674a

    Article  ADS  CAS  Google Scholar 

  37. Li H, Lu XH, Yuan D et al (2017) Lightweight flexible carbon nanotube/polyaniline films with outstanding EMI shielding properties. J Mater Chem C 5:8694–8698. https://doi.org/10.1039/c7tc02394d

    Article  CAS  Google Scholar 

  38. Cheng K, Li HL, Zhu MH et al (2020) In situ polymerization of graphene-polyaniline@polyimide composite films with high EMI shielding and electrical properties. RSC adv 10:2368–2377. https://doi.org/10.1039/c9ra08026k

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang YT, Peng HK, Li TT et al (2021) (2021) Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding. Compos Part A Appl Sci Manuf 141:106199. https://doi.org/10.1016/j.compositesa.2020.106199

    Article  CAS  Google Scholar 

  40. Huang JJ, Wang T, Su YM et al (2021) Hydrophobic MXene/hydroxyethyl cellulose/silicone resin composites with electromagnetic interference shielding. Adv Mater Interface 8:2100186. https://doi.org/10.1002/admi.202100186

    Article  CAS  Google Scholar 

  41. Ma ZL, Kang SL, Ma JZ et al (2020) Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx mxene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14:8368–8382. https://doi.org/10.1021/acsnano.0c02401

    Article  CAS  PubMed  Google Scholar 

  42. Xu HL, Yin XW, Li XL et al (2019) Cheng LF. Lightweight Ti2CTx MXene/poly (vinyl alcohol) composite foams for electromagnetic wave shielding with absorption-dominated feature. ACS Appl Mater Interface 11:10198–10207. https://doi.org/10.1021/acsami.8b21671

    Article  CAS  Google Scholar 

  43. Zhou B, Li YL, Li ZY et al (2021) Fire/heat-resistant, anti-corrosion and folding Ti3C2Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion application. J Mater Chem C 9:10425–10434. https://doi.org/10.1039/D1TC00289A

    Article  CAS  Google Scholar 

  44. Yang FY, Wu N, Li B et al (2022) Biomimetic porous MXene sediment-based hydrogel for high-performance and multifunctional electromagnetic interference shielding. ACS Nano 16:15042–15052. https://doi.org/10.1021/acsnano.2c06164

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51703202) and the Fundamental Research Funds of Zhejiang Sci-Tech University (No. 2021Q003).

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to Writing-original draft, Investigation; ZM contributed to Investigation, Data analysis; LW contributed to Writing-review & editing, Validation; SL contributed to Form analysis; YD contributed to Resources; MW contributed to Conceptualization, Supervision.

Corresponding author

Correspondence to Lili Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not Applicable.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Ma, Z., Wang, L. et al. Flexible sandwich-structured MXene@CNT/SA@MXene film with high electromagnetic shielding performance. J Mater Sci 59, 1968–1988 (2024). https://doi.org/10.1007/s10853-023-09281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09281-x

Navigation