Skip to main content

Advertisement

Log in

Flexible regenerated cellulose composite films with sandwich structures for high-performance electromagnetic interference shielding

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electromagnetic radiation pollution has become increasingly serious in the electronic, industrial, civil, and military fields. Lightweight, flexible, and high-performance electromagnetic shielding films have recently become popular research topics. Herein, regenerated cellulose (RC) was used as the matrix, multi-walled carbon nanotube (MWCNTs) and Fe3O4 nanoparticles were used as fillers, the sandwich-structured composite films (SCFs) containing MWCNTs/RC film as the surface layer and Fe3O4/RC film as the interlayer were successfully prepared via immersion phase conversion and mechanical pressing methods. SCFs exhibited a conductivity of 2.0 S m−1 and an excellent electromagnetic interference shielding effectiveness of 25.6 dB, which were 147% and 32% higher than those of the monolayer composite films at the same filler contents, respectively. The shielding mechanism was mainly attributed to electromagnetic dual energy dissipation and a “reflection–absorption–reflection” effect of the sandwich structure on electromagnetic waves. In addition, the maximum tensile strength of SCFs reached 18.0 MPa, which was attributed to the addition of MWCNTs and the construction of the sandwich structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Cheng ZL, Chang GJ, Xue B, Xie L, Zheng Q (2023) Hierarchical Ni-plated melamine sponge and MXene film synergistically supported phase change materials towards integrated shape stability, thermal management and electromagnetic interference shielding. J Mater Sci Technol 132:132–143. https://doi.org/10.1016/j.jmst.2022.05.049

    Article  CAS  Google Scholar 

  2. Liu HG, Wang Z, Yang YJ, Wu SQ, Wang CK, You CY, Tian N (2022) Thermally conductive MWCNTs/Fe3O4/Ti3C2Tx MXene multi-layer films for broadband electromagnetic interference shielding. J Mater Sci Tech 130:75–85. https://doi.org/10.1016/j.jmst.2022.05.009

    Article  CAS  Google Scholar 

  3. Lan CT, Zou LH, Qiu YP, Ma Y (2020) Tuning solid–air interface of porous graphene paper for enhanced electromagnetic interference shielding. J Mater Sci 55(15):6598–6609. https://doi.org/10.1007/s10853-020-04433-9

    Article  CAS  Google Scholar 

  4. Song P, Liu B, Liang CB, Ruan KP, Qiu H, Ma ZL, Guo YQ, Gu JW (2021) Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nanomicro Lett 13(1):91–107. https://doi.org/10.1007/s40820-021-00624-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu HG, Wu SQ, You CY, Tian N, Li Y, Chopra N (2021) Recent progress in morphological engineering of carbon materials for electromagnetic interference shielding. Carbon 172:569–596. https://doi.org/10.1016/j.carbon.2020.10.067

    Article  CAS  Google Scholar 

  6. Cheng JY, Li CB, Xiong YF et al (2022) Recent advances in design strategies and multifunctionality of flexible electromagnetic interference shielding materials. Nanomicro Lett 14(1):80–110. https://doi.org/10.1007/s40820-022-00823-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yao YY, Jin SH, Zou HM et al (2021) Polymer-based lightweight materials for electromagnetic interference shielding: a review. J Mater Sci 56(11):6549–6580. https://doi.org/10.1007/s10853-020-05635-x

    Article  CAS  Google Scholar 

  8. Ryu SH, Park B, Han YK, Kwon SJ, Kim T, Lamouri R, Kim KH, Lee SB (2022) Electromagnetic wave shielding flexible films with near-zero reflection in the 5G frequency band. J Mater Chem A 10(8):4446–4455. https://doi.org/10.1039/d1ta10065c

    Article  CAS  Google Scholar 

  9. Li MM, Zhao YJ, Zhang ML, Jiang S, Farooq A, Liu LY, Ge A, Liu LF (2022) Recent progress in the application of cellulose in electromagnetic interference shielding materials. Macromol Mater Eng 307(7):2100899. https://doi.org/10.1002/mame.202100899

    Article  CAS  Google Scholar 

  10. Jiménez-Saelices C, Seantier B, Cathala B, Grohens Carbohydr Y (2017) Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties. Carbohydr Polym 157:105–113. https://doi.org/10.1016/j.carbpol.2016.09.068

    Article  CAS  PubMed  Google Scholar 

  11. Zhao SM, Yan Y, Gao A, Zhao S, Cui J, Zhang GF (2018) Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding. ACS Appl Mater Interfaces 10(31):26723–26732. https://doi.org/10.1021/acsami.8b09275

    Article  CAS  PubMed  Google Scholar 

  12. Pothupitiya Gamage SJ, Yang K, Braveenth R et al (2017) MWCNTs coated free-standing carbon fiber fabric for enhanced performance in EMI shielding with a higher absolute EMI SE. Materials 10(12):1350–1360. https://doi.org/10.3390/ma10121350

    Article  CAS  PubMed Central  Google Scholar 

  13. Yang WX, Zhao ZD, Wu K, Huang R, Liu TY, Jiang H, Chen F, Fu Q (2017) Ultrathin flexible reduced graphene oxide/cellulose nanofiber composite films with strongly anisotropic thermal conductivity and efficient electromagnetic interference shielding. J Mater Chem C 5(15):3748–3756. https://doi.org/10.1039/c7tc00400a

    Article  CAS  Google Scholar 

  14. Liang CB, Qiu H, Han YY et al (2019) Superior electromagnetic interference shielding 3D graphene nanoplatelets/reduced graphene oxide foam/epoxy nanocomposites with high thermal conductivity. J Mater Chem C 7(9):2725–2733. https://doi.org/10.1039/c8tc05955a

    Article  CAS  Google Scholar 

  15. Zhan YH, Hao XH, Wang LC et al (2021) Superhydrophobic and flexible silver nanowire-coated cellulose filter papers with sputter-deposited nickel nanoparticles for ultrahigh electromagnetic interference shielding. ACS Appl Mater Interfaces 13(12):14623–14633. https://doi.org/10.1021/acsami.1c03692

    Article  CAS  PubMed  Google Scholar 

  16. Liu XL, Ye ZH, Zhang L et al (2021) Highly flexible electromagnetic interference shielding films based on ultrathin Ni/Ag composites on paper substrates. J Mater Sci 56(9):5570–5580. https://doi.org/10.1007/s10853-020-05518-1

    Article  CAS  Google Scholar 

  17. Wang Y, Zhang X, Lin JH, Li TT, Lou CW, Lin J, Yang H (2023) Lightweight and hydrophobic MXene-decorated PP composite fabric inspired by rock for highly efficient electromagnetic interference shielding. J Mater Sci 58(28):11666–11679. https://doi.org/10.1007/s10853-023-08743-6

    Article  CAS  Google Scholar 

  18. Sun R, Zhang HB, Liu J, Xie X, Yang R, Li Y, Hong S, Yu ZZ (2017) Highly conductive transition metal carbide/carbonitride(MXene)@polystyrene nanocomposites fabricated by electrostatic assembly for highly efficient electromagnetic interference shielding. Adv Funct Mater 27(45):1702807. https://doi.org/10.1002/adfm.201702807

    Article  CAS  Google Scholar 

  19. Zhou B, Zhang Z, Li YL et al (2020) Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers. ACS Appl Mater Interfaces 12(4):4895–4905. https://doi.org/10.1021/acsami.9b19768

    Article  CAS  PubMed  Google Scholar 

  20. Sheng A, Ren W, Yang Y, Yan DX, Duan H, Zhao G, Liu Y, Li ZM (2020) Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Compos Part A Appl Sci Manuf 129:105692. https://doi.org/10.1016/j.compositesa.2019.105692

    Article  CAS  Google Scholar 

  21. Bheema RK, Ojha AK, Praveen Kumar AV, Etika KC (2022) Synergistic influence of barium hexaferrite nanoparticles for enhancing the EMI shielding performance of GNP/epoxy nanocomposites. J Mater Sci 57(19):8714–8726. https://doi.org/10.1007/s10853-022-07214-8

    Article  CAS  Google Scholar 

  22. Sharif F, Arjmand M, Moud AA, Sundararaj U, Roberts EP (2017) Segregated hybrid poly(methyl methacrylate)/graphene/magnetite nanocomposites for electromagnetic interference shielding. ACS Appl Mater Interfaces 9(16):14171–14179. https://doi.org/10.1021/acsami.6b13986

    Article  CAS  PubMed  Google Scholar 

  23. Jeon Y, Ko Y, Lee S, Jeong M, Lee K, Kwon G, Kim J, You J (2023) PEDOT:PSS/regenerated cellulose composite microelectrode for high-performance micro-supercapacitor. Appl Surf Sci 636:157806. https://doi.org/10.1016/j.apsusc.2023.157806

    Article  CAS  Google Scholar 

  24. Zhang YQ, Li J, Huang XJ, Yang CX, Wu C, Yang ZL, Li DQ (2023) Performance-enhanced regenerated cellulose film by adding grape seed extract. Int J Biol Macromol 232:123290. https://doi.org/10.1016/j.ijbiomac.2023.123290

    Article  CAS  PubMed  Google Scholar 

  25. An X, Zhang XF, Li MJ, Pei DF, Ma XM, Li CX (2021) Bubble-templated design of superelastic cellulose foam as a durable ionotropic sensor. ACS Sustain Chem Eng 10:1714–1721. https://doi.org/10.1021/acssuschemeng.1c07830

    Article  CAS  Google Scholar 

  26. Wang HB, Zhang YF, Xiong JQ, Zhang D, Lin H, Chen YY (2022) Regenerated cellulose microspheres-aerogel enabled sustainable removal of metal ions for water remediation. J Mater Sci 57:8016–8028. https://doi.org/10.1007/s10853-022-07175-y

    Article  CAS  Google Scholar 

  27. Ilyin SO, Makarova VV, Anokhina TS, Ignatenko VY, Brantseva TV, Volkov AV, Antonov SV (2018) Diffusion and phase separation at the morphology formation of cellulose membranes by regeneration from N-methylmorpholine N-oxide solutions. Cellulose 25(4):2515–2530. https://doi.org/10.1007/s10570-018-1756-9

    Article  CAS  Google Scholar 

  28. Qi HS, Liu JW, Gao SL, Mӓder E (2019) Multifunctional films composed of carbon nanotubes and cellulose regenerated from alkaline–urea solution. J Mater Chem A 1(6):2161–2168. https://doi.org/10.1039/c2ta00882c

    Article  CAS  Google Scholar 

  29. Zhang LQ, Yang B, Teng J, Lei J, Yan DX, Zhong GJ, Li ZM (2017) Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. J Mater Chem C 5(12):3130–3138. https://doi.org/10.1039/c6tc05516h

    Article  CAS  Google Scholar 

  30. Zhu G, Giraldo Isaza L, Huang B, Dufresne A (2022) Multifunctional nanocellulose/carbon nanotube composite aerogels for high-efficiency electromagnetic interference shielding. ACS Sustain Chem Eng 10(7):2397–2408. https://doi.org/10.1021/acssuschemeng.1c07148

    Article  CAS  Google Scholar 

  31. Zhang LQ, Yang SG, Li L et al (2018) Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding. ACS Appl Mater Interfaces 10(46):40156–40167. https://doi.org/10.1021/acsami.8b14738

    Article  CAS  PubMed  Google Scholar 

  32. Liang CB, Ruan KP, Zhang YL, Gu JW (2020) Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances. ACS Appl Mater Interfaces 12(15):18023–18031. https://doi.org/10.1021/acsami.0c04482

    Article  CAS  PubMed  Google Scholar 

  33. Lee TW, Lee SE, Teong YG (2016) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interfaces 8(20):13123–13132. https://doi.org/10.1021/acsami.6b02218

    Article  CAS  PubMed  Google Scholar 

  34. Im HJ, Oh JY, Ryu S, Hong SH (2019) The design and fabrication of a multilayered graded GNP/Ni/PMMA nanocomposite for enhanced EMI shielding behavior. RSC Adv 9(20):11289–11295. https://doi.org/10.1039/c9ra00573k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peng Q, Ma M, Chen S, Shi YQ, He HW, Wang X (2023) Magnetic-conductive bi-gradient structure design of CP/PGFF/Fe3O4 composites for highly absorbed EMI shielding and balanced mechanical strength. J Mater Sci Technol 133:102–110. https://doi.org/10.1016/j.jmst.2022.05.057

    Article  CAS  Google Scholar 

  36. Tao WT, Ma M, Liao XJ, Shao WQ, Chen S, Shi YQ, He HW, Wang X (2023) Cellulose nanofiber/MXene/mesoporous carbon hollow spheres composite films with porous structure for deceased reflected electromagnetic interference shielding. Compos Commun 41:101647. https://doi.org/10.1016/j.coco.2023.101647

    Article  Google Scholar 

  37. Xu L, Zhang XP, Cui CH, Ren PG, Yan DX, Li ZM (2019) Enhanced mechanical performance of segregated carbon nanotube/poly(lactic acid) composite for efficient electromagnetic interference shielding. Ind Eng Chem Res 58(11):4454–4461. https://doi.org/10.1021/acs.iecr.8b05764

    Article  CAS  Google Scholar 

  38. Li CL, Yang ZJ, Tang ZH, Guo BC, Tian M, Zhang LQ (2019) A scalable strategy for constructing three-dimensional segregated graphene network in polymer via hydrothermal self-assembly. Chem Eng J 363:300–308. https://doi.org/10.1016/j.cej.2019.01.142

    Article  CAS  Google Scholar 

  39. Sun Y, Ding R, Hong SY, Lee J, Seo YK, Nam JD, Suhr J (2021) MXene-xanthan nanocomposite films with layered microstructure for electromagnetic interference shielding and Joule heating. Chem Eng J 410:128348. https://doi.org/10.1016/j.cej.2020.128348

    Article  CAS  Google Scholar 

  40. Qin L, Liu C, Zhang JX et al (2023) Sandwich-type phase-change composites with the dual-function of efficient heat management and temperature-regulated electromagnetic interference shielding performance. J Mater Chem C 11:1381–1392. https://doi.org/10.1039/d2tc04381e

    Article  CAS  Google Scholar 

  41. Chu QD, Tao WT, Lin H, Ma M, Chen S, Shi YQ, He HW, Wang X (2023) Well-designed structure of sandwich-like composite films based on hollow polyaniline and MXene with enhanced electromagnetic wave absorption. Ind Crops Prod 194:116299. https://doi.org/10.1016/j.indcrop.2023.116299

    Article  CAS  Google Scholar 

  42. Yang XF, He WJ, Xu Q et al (2023) Flexible and ultrathin GO@MXene sandwich-type multilayered film toward superior electromagnetic interference shielding in a wide gigahertz range of 3.95–18.0 GHz. J Alloys Compd 946:169338. https://doi.org/10.1016/j.jallcom.2023.169338

    Article  CAS  Google Scholar 

  43. Kamkar M, Ghaffarkhah A, Hosseini E, Amini M, Ghaderi S, Arjmand M (2021) Multilayer polymeric nanocomposites for electromagnetic interference shielding: fabrication, mechanisms, and prospects. New J Chem 45(46):21488–21507. https://doi.org/10.1039/d1nj04626h

    Article  CAS  Google Scholar 

  44. Qi Q, Ma L, Zhao B, Wang S, Liu XB, Lei YJ, Park CB (2020) An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness. ACS Appl Mater Interfaces 12(32):36568–36577. https://doi.org/10.1021/acsami.0c10600

    Article  CAS  PubMed  Google Scholar 

  45. Zhang YL, Ruan KP, Gu JW (2021) Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 17(42):2101951. https://doi.org/10.1002/smll.202101951

    Article  CAS  Google Scholar 

  46. Zhang W, Wei L, Ma J, Bai SL (2020) Exfoliation and defect control of graphene oxide for waterborne electromagnetic interference shielding coatings. Compos Part A 132:105838. https://doi.org/10.1016/j.compositesa.2020.105838

    Article  CAS  Google Scholar 

  47. Jiang DW, Murugadoss V, Wang Y et al (2019) Electromagnetic interference shielding polymers and nanocomposites - a review. Polym Rev 59(2):280–337. https://doi.org/10.1080/15583724.2018.1546737

    Article  CAS  Google Scholar 

  48. Makarova VV, Antonov SA, Brantseva TV, Kulichikhin VG, Anokhina TS (2016) Phase-equilibrium and cellulose-coagulation kinetics for cellulose solutions in N-methylmorpholine-N-oxide. Polym Sci Ser A 58(5):732–743. https://doi.org/10.1134/S0965545X1605014X

    Article  CAS  Google Scholar 

  49. Wicks SS, Villoria RG, Wardle BL (2010) Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Compos Sci Tech 70(1):20–28. https://doi.org/10.1016/j.compscitech.2009.09.001

    Article  CAS  Google Scholar 

  50. French AD (2013) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  51. Yu WC, Wang T, Liu YH et al (2020) Superior and highly absorbed electromagnetic interference shielding performance achieved by designing the reflection-absorption-integrated shielding compartment with conductive wall and lossy core. Chem Eng J 393:124644. https://doi.org/10.1016/j.cej.2020.124644

    Article  CAS  Google Scholar 

  52. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9(11):1276–1291. https://doi.org/10.1039/b613962k

    Article  CAS  PubMed  Google Scholar 

  53. Xie Y, Hong XW, Gao YH, Li MJ, Liu JM, Wang J, Lu J (2012) Synthesis and characterization of La/Nd-doped barium-ferrite/polypyrrole nanocomposites. Synth Met 162(7–8):677–681. https://doi.org/10.1016/j.synthmet.2012.02.023

    Article  CAS  Google Scholar 

  54. Naeem S, Baheti V, Tunakova V, Militky J, Karthik D, Tomkova B (2017) Development of porous and electrically conductive activated carbon web for effective EMI shielding applications. Carbon 111:439–447. https://doi.org/10.1016/j.carbon.2016.10.026

    Article  CAS  Google Scholar 

  55. Iqbal S, Khatoon H, Kotnala RK, Ahmad S (2019) Mesoporous strontium ferrite/polythiophene composite: influence of enwrappment on structural, thermal, and electromagnetic interference shielding. Compos Part B Eng 175:107143. https://doi.org/10.1016/j.compositesb.2019.107143

    Article  CAS  Google Scholar 

  56. Shukla V (2019) Role of spin disorder in magnetic and EMI shielding properties of Fe3O4/C/PPy core/shell composites. J Mater Sci 55(7):2826–2835. https://doi.org/10.1007/s10853-019-04198-w

    Article  CAS  Google Scholar 

  57. Zhan ZY, Song QC, Zhou ZH, Lu CH (2019) Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding. J Mater Chem C 7:9820–9829. https://doi.org/10.1039/C9TC03309B

    Article  CAS  Google Scholar 

  58. Li Y, Xue B, Yang S, Cheng Z, Xie L, Zheng Q (2021) Flexible multilayered films consisting of alternating nanofibrillated cellulose/Fe3O4 and carbon nanotube/polyethylene oxide layers for electromagnetic interference shielding. Chem Eng J 410:128356. https://doi.org/10.1016/j.cej.2020.128356

    Article  CAS  Google Scholar 

  59. Zhang FD, Ren PG, Guo H et al (2021) Flexible and conductive cellulose composite paper for highly efficient electromagnetic interference shielding. Adv Electron Mater 7(9):2100496. https://doi.org/10.1002/aelm.202100496

    Article  CAS  Google Scholar 

  60. Jia LC, Li YK, Yan DX (2017) Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121:267–273. https://doi.org/10.1016/j.carbon.2017.05.100

    Article  CAS  Google Scholar 

  61. Ma M, Tao WT, Liao XJ, Chen S, Shi YQ, He HW, Wang X (2023) Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding. Chem Eng J 452:139471. https://doi.org/10.1016/j.cej.2022.139471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China–Joint Fund Project [No. U22A20175] for supporting this work.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was prepared through the contribution of all authors.

Corresponding author

Correspondence to Xueyan Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1183 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wu, C., Ji, B. et al. Flexible regenerated cellulose composite films with sandwich structures for high-performance electromagnetic interference shielding. J Mater Sci 59, 5634–5646 (2024). https://doi.org/10.1007/s10853-024-09543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-024-09543-2

Navigation