Skip to main content
Log in

Liquid metal/metal porous skeleton with high thermal conductivity and stable thermal reliability

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

New thermal interface materials (TIM) with liquid metal (LM) as the main component show many advantages in the field of thermal management. However, it is prone to leakage and causes electronic components to fail due to its fluidity, corrosiveness and difficulty in adsorption, thus limiting its applications. In this paper, based on the high thermal conductivity of LM, the composite material made of eutectic gallium indium alloy (EGaIn) and nickel-plated copper mesh (NPCM) was prepared, and the TIM with high thermal conductivity, stability and reliability was obtained. With surface plating, the plating on the copper surface achieves an area coverage of up to 97.7%, effectively preventing EGaIn corrosion. The complete wetting between materials can be achieved through surface modification of NPCM with an EGaIn oxide layer. The surface modification of NPCM with EGaIn oxide layer can achieve complete wetting between materials. The thermal conductivity of the composite is 26.4 W m−1 K−1. Compared to Nickel foams (NiF), NPCM/EGaIn composite exhibits a 22.4% increase in thermal conductivity. In addition, its thermal conductivity fluctuates in a range below 7 percent even after undergoing high-temperature aging and low-temperature cycling. The actual load test demonstrated that the use of EGaIn/NPCM resulted in an 18.0% reduction in CPU full load temperature and a 78.0% decrease in maximum throttling peak, as compared to conventional silicone grease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data and code availability

All data are available to readers.

References

  1. Ni S-H, Hu Y-F, Huang Y-C et al (2022) A dual cooling composite film by subtly combining phase change materials and thermally conductive fillers for efficient thermal management. J Mater Sci 57:14464–14477. https://doi.org/10.1007/s10853-022-07551-8

    Article  CAS  Google Scholar 

  2. Sun Z, Li J, Yu M, Kathaperumal M, Wong C-P (2022) A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications. Chem Eng J 446:137319. https://doi.org/10.1016/j.cej.2022.137319

    Article  CAS  Google Scholar 

  3. Shih M-K, Shih S, Liao T-W, Chen D-L, Liu DS, Tarng D (2022) Investigation into thermo-mechanical reliability of copper trace lines in stacked dies ball grid array packaging. Microelectron Rellab 130:114488. https://doi.org/10.1016/j.microrel.2022.114488

    Article  CAS  Google Scholar 

  4. Zou L, Lin P, Zhang J, Su H, Chen Y (2022) Highly-efficient thermal management of electronic devices enabled by boron nitride-incorporated phase change material gels. J Mater Sci 57:20268–20284. https://doi.org/10.1007/s10853-022-07872-8

    Article  CAS  Google Scholar 

  5. Sohel Murshed SM, Nieto de Castro CA (2017) A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sustain Energy Rev 78:821–833. https://doi.org/10.1016/j.rser.2017.04.112

    Article  CAS  Google Scholar 

  6. Hua W, Zhang L, Zhang X (2021) Research on passive cooling of electronic chips based on PCM: a review. J Mol Liq 340:117183. https://doi.org/10.1016/j.molliq.2021.117183

    Article  CAS  Google Scholar 

  7. Tessier-Poirier A, Monin T, Léveillé É, Monfray S, Formosa F, Fréchette LG (2019) How evaporation and condensation lead to self-oscillations in the single-branch pulsating heat pipe. Phys Rev Fluids 4:103901. https://doi.org/10.1103/PhysRevFluids.4.103901

    Article  Google Scholar 

  8. Yousefi T, Mousavi SA, Farahbakhsh B, Saghir MZ (2013) Experimental investigation on the performance of CPU coolers: effect of heat pipe inclination angle and the use of nanofluids. Microelectron Rellab 53:1954–1961. https://doi.org/10.1016/j.microrel.2013.06.012

    Article  CAS  Google Scholar 

  9. Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel LC (2017) Heat pipe based systems-advances and applications. Energy 128:729–754. https://doi.org/10.1016/j.energy.2017.04.028

    Article  Google Scholar 

  10. Chen H, Ruan X-h, Peng Y-h, Wang Y-l, Yu C-k (2022) Application status and prospect of spray cooling in electronics and energy conversion industries. Sustain Energy Techn 52:102181. https://doi.org/10.1016/j.seta.2022.102181

    Article  Google Scholar 

  11. Deng Y, Zhang M, Jiang Y, Liu J (2022) Two-stage multichannel liquid–metal cooling system for thermal management of high-heat-flux-density chip array. Energ Convers Manage 259:115591. https://doi.org/10.1016/j.enconman.2022.115591

    Article  CAS  Google Scholar 

  12. Li S, Liu JL, Ding L, Liu JX, Xu J, Peng Y, Chen MX (2021) Active thermal management of high-power LED through chip on thermoelectric cooler. IEEE T Electron Dev 68:1753. https://doi.org/10.1109/TED.2021.3062314

    Article  CAS  Google Scholar 

  13. Tan H, Wu L, Wang M, Yang Z, Du P (2019) Heat transfer improvement in microchannel heat sink by topology design and optimization for high heat flux chip cooling. Int J Heat Mass Transf 129:681–689. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.092

    Article  Google Scholar 

  14. Shamim MS, Narde RS, Gonzalez-Hernandez J-L, Ganguly A, Venkatarman J, Kandlikar SG (2019) Evaluation of wireless network-on-chip architectures with microchannel-based cooling in 3D multicore chips. Sustain Comput-infor 21:165–178. https://doi.org/10.1016/j.suscom.2019.01.008

    Article  Google Scholar 

  15. Yang M, Li M-T, Hua Y-C, Wang W, Cao B-Y (2020) Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips. Int J Heat Mass Transf 160:120230. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120230

    Article  CAS  Google Scholar 

  16. Zhu K, Zheng M, Wang B, Dai B, Wang Y, Wei J, Chen X (2017) Experimental study of energy saving performances in chip cooling by using heat sink with embedded heat pipe. Energy Procedia 105:5160–5165. https://doi.org/10.1016/j.egypro.2017.03.1046

    Article  Google Scholar 

  17. Koroglu C, Pop E (2023) High thermal conductivity insulators for thermal management in 3D integrated circuits. IEEE T Electron Dev 44:496–499. https://doi.org/10.1109/LED.2023.3240676

    Article  CAS  Google Scholar 

  18. Zhao W, Yu G, Li S, Liu Z, Wu L (2023) Rate capability and Ragone plots for thermal management multifunctional structure designing. Int J Mech Sci 252:108367. https://doi.org/10.1016/j.ijmecsci.2023.108367

    Article  Google Scholar 

  19. Feng C-P, Sun K-Y, Ji J-C, Hou L, Cui G-P, Zhao Z-G, Lan H-B (2023) 3D Printable, form stable, flexible phase-change-based electronic packaging materials for thermal management. Addit Manuf 71:103586. https://doi.org/10.1016/j.addma.2023.103586

    Article  CAS  Google Scholar 

  20. Li J, Ye Z, Mo P et al (2023) Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management. Compos Sci Technol 234:109948. https://doi.org/10.1016/j.compscitech.2023.109948

    Article  CAS  Google Scholar 

  21. Cheng G, Wang Z, Wang X, He Y (2022) All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity. Appl Energy 322:119509. https://doi.org/10.1016/j.apenergy.2022.119509

    Article  CAS  Google Scholar 

  22. Casper T, Römer U, De Gersem H, Schöps S (2020) Coupled simulation of transient heat flow and electric currents in thin wires: application to bond wires in microelectronic chip packaging. Comput Math Appl 79:1781–1801. https://doi.org/10.1016/j.camwa.2019.10.009

    Article  Google Scholar 

  23. Prasher R (2006) Thermal interface materials: historical perspective, status, and future directions. P IEEE 94:1571–1586. https://doi.org/10.1109/JPROC.2006.879796

    Article  CAS  Google Scholar 

  24. Wang S, Cheng Y, Wang R, Sun J, Gao L (2014) Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl Mater Inter 6:6481–6486. https://doi.org/10.1021/am500009p

    Article  CAS  Google Scholar 

  25. Xu S, Wang S, Chen Z, Sun Y, Gao Z, Zhang H, Zhang J (2020) Electric-field-assisted growth of vertical graphene arrays and the application in thermal interface materials. Adv Funct Mater 30:2003302. https://doi.org/10.1002/adfm.202003302

    Article  CAS  Google Scholar 

  26. Ding S-C, Fan J-F, He D-Y et al (2022) High thermal conductivity and remarkable damping composite gels as thermal interface materials for heat dissipation of chip. Chip 1:100013. https://doi.org/10.1016/j.chip.2022.100013

    Article  Google Scholar 

  27. Wang X, Lu C, Rao W (2021) Liquid metal-based thermal interface materials with a high thermal conductivity for electronic cooling and bioheat-transfer applications. Appl Therm Eng 192:116937. https://doi.org/10.1016/j.applthermaleng.2021.116937

    Article  CAS  Google Scholar 

  28. Wang H, Chen S, Zhu X et al (2022) Phase transition science and engineering of gallium-based liquid metal. Matter 5:2054–2085. https://doi.org/10.1016/j.matt.2022.05.031

    Article  CAS  Google Scholar 

  29. Ki S, Shim J, Oh S et al (2021) Gallium-based liquid metal alloy incorporating oxide-free copper nanoparticle clusters for high-performance thermal interface materials. Int J Heat Mass Transf 170:121012. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121012

    Article  CAS  Google Scholar 

  30. Hu X-Y, Tian Z, Chen C-H (2023) Minimizing interface thermal resistance via laser surface micropatterning for enhancing wetting of gallium-based liquid metal with copper. Int J Heat Mass Transf 214:124424. https://doi.org/10.1016/j.ijheatmasstransfer.2023.124424

    Article  CAS  Google Scholar 

  31. Jiao T-M, Deng Q-B, Jing G-X et al (2023) Enhanced thermal conductivity of liquid metal composite with lower surface tension as thermal interface materials. J Mater Res Technol 24:3657–3669. https://doi.org/10.1016/j.jmrt.2023.04.006

    Article  CAS  Google Scholar 

  32. Zhao Z-B, Soni S, Lee T, Nijhuis C-A, Xiang D (2023) Smart eutectic gallium-indium: from properties to applications. Adv Mater 35(1):2203391. https://doi.org/10.1002/adma.202203391

    Article  CAS  Google Scholar 

  33. Wu Y-F, Kantharaj R, Alsaati A, Marconnet A, Handwerker C, Minerals M, Mater, S (2022) Investigation of thermal properties and thermal reliability of ga-based low melting temperature alloys as thermal interface materials (TIMs). 150th TMS Annual Meeting & Exhibition 1385–1395. https://doi.org/10.1007/978-3-030-92381-5_132

  34. Wang S, Zhao X-Y, Luo J, Zhuang L-L, Zou D-Q (2022) Liquid metal (LM) and its composites in thermal management. Compos Part A-Appl S 163:107216. https://doi.org/10.1016/j.compositesa.2022.107216

    Article  CAS  Google Scholar 

  35. Liu X-L, Chen M, Xu Q et al (2022) Bamboo derived SiC ceramics-phase change composites for efficient, rapid, and compact solar thermal energy storage. Sol Energy Mater Sol Cells 240:111726. https://doi.org/10.1016/j.solmat.2022.111726

    Article  CAS  Google Scholar 

  36. Xu Q, Liu X, Luo Q et al (2022) Loofah-derived eco-friendly SiC ceramics for high-performance sunlight capture, thermal transport, and energy storage. Energy Storage Mater 45:786–795. https://doi.org/10.1016/j.ensm.2021.12.030

    Article  Google Scholar 

  37. Luo Q, Liu X, Wang H et al (2022) Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics. Appl Energy 306:117995. https://doi.org/10.1016/j.apenergy.2021.117995

    Article  CAS  Google Scholar 

  38. Haque A, Tutika R, Byrum RL, Bartlett MD (2020) Programmable liquid metal microstructures for multifunctional soft thermal composites. Adv Funct Mater 30:2000832. https://doi.org/10.1002/adfm.202000832

    Article  CAS  Google Scholar 

  39. Bartlett MD, Kazem N, Powell-Palm MJ, Huang X, Sun W, Malen JA, Majidi C (2017) High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci USA 114:2143–2148. https://doi.org/10.1073/pnas.1616377114

    Article  CAS  Google Scholar 

  40. Zheng J, Li X, Xing W et al (2022) Paste-like recyclable Ga liquid metal phase change composites loaded with miscible Ga2O3 particles for transient cooling of portable electronics. Appl Therm Eng 213:118766. https://doi.org/10.1016/j.applthermaleng.2022.118766

    Article  CAS  Google Scholar 

  41. Liu G-Z, He D-J, Liu J-F et al (2023) Influencing factors for resistance performance of Cu/C composites to liquid Ga corrosion. Mater Today Commun 35:105999. https://doi.org/10.1016/j.mtcomm.2023.105999

    Article  CAS  Google Scholar 

  42. Gao Z-Q, Wang C, GAO N, et al (2022) Electrodeposited Ni-W coatings as the effective reaction barrier at Ga-21.5In-10Sn/Cu interfaces. Surf Interfaces 30:101838. https://doi.org/10.1016/j.surfin.2022.101838

    Article  CAS  Google Scholar 

  43. Zeng C-Z, Ma C-F, Shen J (2022) High thermal conductivity in diamond induced carbon fiber-liquid metal mixtures. Compos Part B-Eng 238:109902. https://doi.org/10.1016/j.compositesb.2022.109902

    Article  CAS  Google Scholar 

  44. Wang X-H, Zeng T, Xu G-D, Zhang K, Yu S-W (2021) Predicting the equivalent thermal conductivity of pyramidal lattice core sandwich structures based on Monte Carlo model. Int J Therm Sci 161:106701. https://doi.org/10.1016/j.ijthermalsci.2020.106701

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the financial support from the Fundamental Research Funds for the Central Universities of China (Grant No. 2022CDJQY-014) and 2022 Jiangsu Provincial Science and technology plan special fund BE2022110 (key research and development plan, industry prospect and key core technology).

Author information

Authors and Affiliations

Authors

Contributions

LT: data curation, investigation, methodology, validation, writing-original draft. JZ: conceptualization, formal analysis, methodology, resources, writing-review & editing. JS: conceptualization, funding acquisition, project administration, resources, supervision, writing & review & editing.

Corresponding author

Correspondence to Jun Shen.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Handling Editor: P. Nash.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Zhang, J. & Shen, J. Liquid metal/metal porous skeleton with high thermal conductivity and stable thermal reliability. J Mater Sci 58, 17829–17842 (2023). https://doi.org/10.1007/s10853-023-09159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09159-y

Navigation