Skip to main content

Advertisement

Log in

The role of Y2O3 in the bioactivity of YSZ/PLLA composites

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Yttria stabilized zirconia, one of the most common ceramics in the field of dentistry and in particular dental implantology, for decades has been wrongly considered to be completely bio-inert. In this work, we investigate the role of yttria on the bioactivity of yttria stabilized zirconia formulations, proving that the composite ceramic is actually bioactive, do not affect the cell adhesion and can stimulate cell proliferation, in vitro. To reduce to minimum the number of variables, yttria stabilized zirconia particles with different contents of yttria but similar average size and morphology have been used to reinforce an electrospun poly-l-lactide (PLLA) fibers. Characterization of both the ceramic particulates and the scaffolds confirmed the morphological and structural similarities between the samples, which were then tested in vitro using a human fetal osteoblasts model. The results showed that cell proliferation is enhanced by the presence of the composite ceramic additive, with higher contents of yttria being overall more effective. These results confirm that yttria plays a key role in the biocompatibility and bioactivity of ceramics and can be used to improve the chances for a positive outcome in the osteo-integration of dental implants and/or biomedical scaffolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

Abbreviations

PLLA:

Poly-l-lactide acid

YSZ:

Yttria stabilized zirconia

PMMA:

Poly(methyl methacrylate)

RFU:

Relative fluorescence units

SEM:

Scanning electron microscope

ESEM:

Environmental scanning electron microscope

DAPI:

4′,6-Diamidino-2-phenylindole

FBS:

Fetal bovine serum

DMEM:

Dulbecco’s modified eagle medium

References

  1. Rubat du Merac M (2020) Transparent ceramics: materials, processing, properties and applications. In: Reference module in materials science and materials engineering. Elsevier

  2. Xu YN, Ching WY (1999) Electronic structure of yttrium aluminum garnet (Y3Al5O12). Phys Rev B 59(16):10530

    Article  CAS  Google Scholar 

  3. Klemm H, Pezzotti G (1994) Fracture toughness and time-dependent strength behavior of low-doped silicon nitrides for applications at 1400 °C. J Am Ceram Soc 77(2):553–561

    Article  CAS  Google Scholar 

  4. Zhu W, Nakashima S, Matsuura M, Gu H, Marin E, Pezzotti G (2019) Raman and X-ray photoelectron spectroscopic characterizations of thermal stability of 3 mol% yttria stabilized zirconia ceramics. J Eur Ceram Soc 39(15):4928–4935

    Article  CAS  Google Scholar 

  5. Hao CC, Muchtar A, Azhari CH, Razali M, Aboras M (2016) Influence of sintering temperature on translucency of yttria-stabilized zirconia for dental crown applications. J Teknol. https://doi.org/10.11113/jt.v78.9865

    Article  Google Scholar 

  6. Kaplan M, Park J, Young Kim S, Ozturk A (2018) Production and properties of tooth-colored yttria stabilized zirconia ceramics for dental applications. Ceram Int 44(2):2413–2418

    Article  CAS  Google Scholar 

  7. Holz L, Macias J, Vitorino N, Fernandes AJS, Costa FM, Almeida MM (2018) Effect of Fe2O3 doping on colour and mechanical properties of Y-TZP ceramics. Ceram Int 44(15):17962–17971

    Article  CAS  Google Scholar 

  8. Shin H, Ko H, Kim M (2016) Cytotoxicity and biocompatibility of zirconia (Y-TZP) posts with various dental cements. Restor Dent Endod 41(3):167–175

    Article  Google Scholar 

  9. Lin F, Yan C, Zheng W, Fan W, Adam C, Oloyede A (2011) Preparation of mesoporous bioglass coated zirconia scaffold for bone tissue engineering. Adv Mat Res 365:209–215

    Google Scholar 

  10. Rajakumar G, Mao L, Bao T, Wen W, Wang S, Gomathi T et al (2021) Yttrium oxide nanoparticle synthesis: an overview of methods of preparation and biomedical applications. Appl Sci 11(5):2172

    Article  CAS  Google Scholar 

  11. Dong X, Wu Z, Li X, Xiao L, Yang M, Li Y et al (2020) The size-dependent cytotoxicity of amorphous silica nanoparticles: a systematic review of in vitro studies. Int J Nanomed 15:9089–9113

    Article  CAS  Google Scholar 

  12. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U et al (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949

    Article  CAS  Google Scholar 

  13. Lee S, Kasuga T, Kato K (2010) Effects of Y2O3 particle size on cytotoxicity and cell morphology. J Ceram Soc Jpn 118(1378):428–433

    Article  CAS  Google Scholar 

  14. Zhou G, Li Y, Ma Y, Liu Z, Cao L, Wang D et al (2016) Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro. J Nanopart Res. https://doi.org/10.1007/s11051-016-3447-5

    Article  Google Scholar 

  15. Chaki Borrás M, Sluyter R, Barker PJ, Konstantinov K, Bakand S (2020) Y2O3 decorated TiO2 nanoparticles: enhanced UV attenuation and suppressed photocatalytic activity with promise for cosmetic and sunscreen applications. J Photochem Photobiol B 207(111883):111883

    Article  Google Scholar 

  16. Augustine R, Dalvi YB, Yadu Nath VK, Varghese R, Raghuveeran V, Hasan A et al (2019) Yttrium oxide nanoparticle loaded scaffolds with enhanced cell adhesion and vascularization for tissue engineering applications. Mater Sci Eng C Mater Biol Appl 103(109801):109801

    Article  CAS  Google Scholar 

  17. Withington ET (1893) Medical history from the earliest times: XLVIII.-Paracelsus. Hospital 14(340):3–4

    CAS  Google Scholar 

  18. Lehman-McKeeman L (2010) Paracelsus and formaldehyde 2010: the dose to the target organ makes the poison. Toxicol Sci 116(2):361–363

    Article  CAS  Google Scholar 

  19. Honma T, Marin E, Boschetto F, Bin Idrus MD, Mizuno K, Miyamoto N et al (2022) In vitro osteoconductivity of PMMA-Y2O3 composite resins. Adv Ind Eng Polym Res 6:24

    Google Scholar 

  20. Chan K, Tsoi JK-H, Wu O-K, Yon MJ-Y, Wong RW-K (2019) Mechanical and biological evaluations of novel electrospun PLLA composite scaffolds doped with oxide ceramics. J Mech Behav Biomed Mater 97:229–237

    Article  CAS  Google Scholar 

  21. Ziaee F, Zebarjad SM, Javadpour S (2018) Compressive and flexural properties of novel polylactic acid/hydroxyapatite/yttria-stabilized zirconia hybrid nanocomposite scaffold. Int J Polym Mater Polym Biomater 67(4):229–238

    Article  CAS  Google Scholar 

  22. Rutherford D, Exarhos S, Xu C, Niacaris M, Mariano C, Dayap B et al (2020) Synthesis, characterization, and cytocompatibility of yttria stabilized zirconia nanopowders for creating a window to the brain. J Biomed Mater Res B Appl Biomater 108(3):925–938

    Article  CAS  Google Scholar 

  23. Marin R, Sponchia G, Zucchetta E, Riello P, Enrichi F, De Portu G et al (2013) Monitoring the t → m martensitic phase transformation by photoluminescence emission in Eu3+-doped zirconia powders. J Am Ceram Soc 96(8):2628–2635

    Article  CAS  Google Scholar 

  24. Boffelli M, Zhu W, Back M, Sponchia G, Francese T, Riello P et al (2014) Oxygen hole states in zirconia lattices: quantitative aspects of their cathodoluminescence emission. J Phys Chem A 118(42):9828–9836

    Article  CAS  Google Scholar 

  25. Kondoh J, Shiota H, Kawachi K, Nakatani T (2004) Yttria concentration dependence of tensile strength in yttria-stabilized zirconia. J Alloys Compd 365(1–2):253–258

    Article  CAS  Google Scholar 

  26. Köck E-M, Kogler M, Bielz T, Klötzer B, Penner S (2013) In situ FT-IR spectroscopic study of CO2 and CO adsorption on Y2O3, ZrO2, and yttria-stabilized ZrO2. J Phys Chem C Nanomater Interfaces 117(34):17666–17673

    Article  Google Scholar 

  27. Zhu W, Nakashima S, Marin E, Gu H, Pezzotti G (2020) Microscopic mapping of dopant content and its link to the structural and thermal stability of yttria-stabilized zirconia polycrystals. J Mater Sci 55(2):524–534. https://doi.org/10.1007/s10853-019-04080-9

    Article  CAS  Google Scholar 

  28. Li M, Zhang L, Zhang C, Xu E, Liu X, Zhao F et al (2020) Effect of Y2O3 on the physical properties and biocompatibility of β-SiAlON ceramics. Ceram Int 46(15):23427–23432

    Article  CAS  Google Scholar 

  29. Gong Y, Honda Y, Adachi T, Marin E, Yoshikawa K, Pezzotti G et al (2021) Tailoring silicon nitride surface chemistry for facilitating odontogenic differentiation of rat dental pulp cells. Int J Mol Sci 22(23):13130

    Article  CAS  Google Scholar 

  30. Marin E, Rondinella A, Boschetto F, Zanocco M, McEntire BJ, Bal BS et al (2018) Understanding silicon nitride’s biological properties: from inert to bioactive ceramic. Key Eng Mater 782:289–296

    Article  Google Scholar 

  31. Lange FF (1986) Transformation-toughened ZrO2: correlations between grain size control and composition in the system ZrO2–Y2O3. J Am Ceram Soc 69(3):240–242

    Article  CAS  Google Scholar 

  32. Gautam C, Joyner J, Gautam A, Rao J, Vajtai R (2016) Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Trans 45(48):19194–19215

    Article  CAS  Google Scholar 

  33. Keçeli SA, Alanyali H (2004) A study on the evaluation of the cytotoxicity of Al2O3, Nb2O5, Ta2O5, TiO2 and ZrO2. Turk J Eng Environ Sci 28(1):49

    Google Scholar 

  34. Catauro M, Raucci MG, Continenza MA (2007) Release kinetics of ampicillin, biocompatibility tests with a fibroblast strain of a zirconia gel glass. Lett Drug Des Discov 4(6):453–459

    Article  CAS  Google Scholar 

  35. Kalinina MV, Kovalko NY, Suslov DN, Andozhskaia YS, Galibin OV, Shilova OA (2021) Effect of highly porous bioceramics based on ZrO2–Y2O3–CeO2 system on the biological tissues of experimental animals. Inorg Mater Appl Res 12(2):370–376

    Article  Google Scholar 

  36. Gao C, Jin Y, Jia G, Suo X, Liu H, Liu D et al (2019) Y2O3 nanoparticles caused bone tissue damage by breaking the intracellular phosphate balance in bone marrow stromal cells. ACS Nano 13(1):313–323

    Article  CAS  Google Scholar 

  37. Hou B, Kim S, Kim T, Kim J, Hong S, Bahn CB et al (2016) The hydration structure at yttria-stabilized cubic zirconia (110)-water interface with sub-Ångström resolution. Sci Rep 6:27916

    Article  CAS  Google Scholar 

  38. Ahmadinejad F, Geir Møller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami M-S (2017) Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants 6(3):51

    Article  Google Scholar 

  39. Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TXT et al (2012) The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33(31):7746–7755

    Article  CAS  Google Scholar 

  40. Honma T, Marin E, Boschetto F, Daniel Bin Idrus M, Mizuno K, Miyamoto N et al (2022) In vitro osteoconductivity of PMMA-Y2O3 composite resins. Adv Ind Eng Polym Res. https://doi.org/10.1016/j.aiepr.2022.08.003

    Article  Google Scholar 

  41. Fröhlich E (2012) The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 7:5577–5591

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EM contributed to conceptualization, formal analysis, writing—original draft, visualization, project administration. GB contributed to investigation, data curation, visualization, writing. OY contributed to investigation, formal analysis. WZ contributed to supervision, writing—review & editing. AR contributed to investigation, data analysis, visualization. AL contributed to supervision, resources. HX contributed to methodology, resources. MM contributed to investigation, data analysis, review & editing. SP contributed to supervision, resources, validation, writing—review & editing. GP contributed to supervision, resources, writing—review & editing.

Corresponding author

Correspondence to Elia Marin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Supplementary information

This article does not include supplementary information.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marin, E., Bassi, G., Yoshikawa, O. et al. The role of Y2O3 in the bioactivity of YSZ/PLLA composites. J Mater Sci 58, 11218–11234 (2023). https://doi.org/10.1007/s10853-023-08608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08608-y

Navigation