Skip to main content
Log in

Exploring the oxidation mechanisms of black phosphorus: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Black phosphorus (BP) has unmatched application advantages as a two-dimensional semiconductor in electronic and optoelectronic devices owing to its tunable direct bandgap, high carrier mobility, and significant in-plane anisotropy. However, the commercial use of BP is limited owing to its instability. BP oxidizes easily under ambient conditions, leading to device performance degradation. The oxidation behavior and mechanisms of BP are understood to a certain extent, with a few reviews outlining the reported results. Nevertheless, no review has attempted to discuss the inconsistencies that have emerged from studies of BP oxidation. The roles of light, oxygen, and water in the process of BP oxidation are reviewed herein, accompanied by a critical discussion of important and inconsistent results. Because defects and edges inevitably exist in BP, the formation and chemical activity of defects and edge configurations of BP are comprehensively examined for the first time. The final part of this paper provides insights toward a deeper understanding of BP oxidation and possible passivation strategies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data and code availability

Data and code sharing are not applicable to this article as no new data and code were created in this study.

References

  1. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Karakachian H, Nguyen TTN, Aprojanz J et al (2020) One-dimensional confinement and width-dependent bandgap formation in epitaxial graphene nanoribbons. Nat Commun 11:6380. https://doi.org/10.1038/s41467-020-19051-x

    Article  CAS  Google Scholar 

  3. Yang H, Valenzuela SO, Chshiev M et al (2022) Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606:663–673. https://doi.org/10.1038/s41586-022-04768-0

    Article  CAS  Google Scholar 

  4. Gaufres E, Fossard F, Gosselin V et al (2019) Momentum-resolved dielectric response of free-standing mono-, bi-, and trilayer black phosphorus. Nano Lett 19:8303–8310. https://doi.org/10.1021/acs.nanolett.9b03928

    Article  CAS  Google Scholar 

  5. Li L, Kim J, Jin C et al (2017) Direct observation of the layer-dependent electronic structure in phosphorene. Nat Nanotechnol 12:21–25. https://doi.org/10.1038/nnano.2016.171

    Article  CAS  Google Scholar 

  6. Liu J, Zhou Y, Zhu W (2020) Determining bandgap of black phosphorus using capacitance. Appl Phys Lett 116:183103. https://doi.org/10.1063/5.0010165

    Article  CAS  Google Scholar 

  7. Li L, Yu Y, Ye GJ et al (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377. https://doi.org/10.1038/nnano.2014.35

    Article  CAS  Google Scholar 

  8. Radisavljevic B, Radenovic A, Brivio J et al (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150. https://doi.org/10.1038/nnano.2010.279

    Article  CAS  Google Scholar 

  9. Mak KF, Lee C, Hone J et al (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805. https://doi.org/10.1103/PhysRevLett.105.136805

    Article  CAS  Google Scholar 

  10. Xia F, Wang H, Jia Y (2014) Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat Commun 5:4458. https://doi.org/10.1038/ncomms5458

    Article  CAS  Google Scholar 

  11. Mao N, Wang X, Lin Y et al (2019) Direct observation of symmetry-dependent electron-phonon coupling in black phosphorus. J Am Chem Soc 141:18994–19001. https://doi.org/10.1021/jacs.9b07974

    Article  CAS  Google Scholar 

  12. Zhang G, Huang S, Wang F et al (2020) The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nat Commun 11:1847. https://doi.org/10.1038/s41467-020-15699-7

    Article  CAS  Google Scholar 

  13. Lee SY, Yee KJ (2022) Black phosphorus phase retarder based on anisotropic refractive index dispersion. 2D Mater 9:015020. https://doi.org/10.1088/2053-1583/ac3a99

    Article  CAS  Google Scholar 

  14. Zhong Q (2022) Intrinsic and engineered properties of black phosphorus. Mater Today Phys 28:100895. https://doi.org/10.1016/j.mtphys.2022.100895

    Article  CAS  Google Scholar 

  15. Li Q, Wu J, Liu Y et al (2021) Recent advances in black phosphorus-based electrochemical sensors: a review. Anal Chim Acta 1170:338480. https://doi.org/10.1016/j.aca.2021.338480

    Article  CAS  Google Scholar 

  16. Biswas S, Grajower MY, Watanabe K et al (2021) Broadband electro-optic polarization conversion with atomically thin black phosphorus. Science 374:448–453. https://doi.org/10.1126/science.abj7053

    Article  CAS  Google Scholar 

  17. Kim H, Uddin SZ, Lien DH et al (2021) Actively variable-spectrum optoelectronics with black phosphorus. Nature 596:232–237. https://doi.org/10.1038/s41586-021-03701-1

    Article  CAS  Google Scholar 

  18. Grillo A, Pelella A, Faella E et al (2022) Memory effects in black phosphorus field effect transistors. 2D Mater 9:015028. https://doi.org/10.1088/2053-1583/ac3f45

    Article  CAS  Google Scholar 

  19. Li G, Qi X, Wu J et al (2022) Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J Hazard Mater 436:129107. https://doi.org/10.1016/j.jhazmat.2022.129107

    Article  CAS  Google Scholar 

  20. Li G, Wu J, Qi X et al (2022) Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin. Mater Today Chem 26:101043. https://doi.org/10.1016/j.mtchem.2022.101043

    Article  CAS  Google Scholar 

  21. Kim M, Kim HG, Park S et al (2019) Intrinsic correlation between electronic structure and degradation: from few-layer to bulk black phosphorus. Angew Chem Int Ed 58:3754–3758. https://doi.org/10.1002/anie.201811743

    Article  CAS  Google Scholar 

  22. Wood JD, Wells SA, Jariwala D et al (2014) Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett 14:6964–6970. https://doi.org/10.1021/nl5032293

    Article  CAS  Google Scholar 

  23. Island JO, Steele GA, van der Zant HS et al (2015) Environmental instability of few-layer black phosphorus. 2D Mater 2:011002. https://doi.org/10.1088/2053-1583/2/1/011002

    Article  CAS  Google Scholar 

  24. Abellan G, Wild S, Lloret V et al (2017) Fundamental insights into the degradation and stabilization of thin layer black phosphorus. J Am Chem Soc 139:10432–10440. https://doi.org/10.1021/jacs.7b04971

    Article  CAS  Google Scholar 

  25. Li M, Mao C, Ling L (2022) In situ visualization on surface oxidative corrosion with free radicals: black phosphorus nanoflake as an example. Environ Sci Technol 56:361–367. https://doi.org/10.1021/acs.est.1c06567

    Article  CAS  Google Scholar 

  26. Hu Z, Li Q, Lei B et al (2017) Water-catalyzed oxidation of few-layer black phosphorous in a dark environment. Angew Chem Int Ed 56:9131–9135. https://doi.org/10.1002/anie.201705012

    Article  CAS  Google Scholar 

  27. Yi Z, Ma Y, Zheng Y et al (2019) Fundamental insights into the performance deterioration of phosphorene due to oxidation: a GW method investigation. Adv Mater Interfaces 6:1801175. https://doi.org/10.1002/admi.201801175

    Article  Google Scholar 

  28. Shen W, Sun Z, Huo S et al (2022) Directly evaluating the optical anisotropy of few-layered black phosphorus during ambient oxidization. Adv Opt Mater 10:2102018. https://doi.org/10.1002/adom.202102018

    Article  CAS  Google Scholar 

  29. Moreno-Moreno M, Lopez-Polin G, Castellanos-Gomez A et al (2016) Environmental effects in mechanical properties of few-layer black phosphorus. 2D Mater 3:031007. https://doi.org/10.1088/2053-1583/3/3/031007

    Article  CAS  Google Scholar 

  30. Favron A, Gaufres E, Fossard F et al (2015) Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat Mater 14:826–832. https://doi.org/10.1038/nmat4299

    Article  CAS  Google Scholar 

  31. Zhou Q, Chen Q, Tong Y et al (2016) Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection. Angew Chem Int Ed 55:11437–11441. https://doi.org/10.1002/anie.201605168

    Article  CAS  Google Scholar 

  32. Ziletti A, Carvalho A, Campbell DK et al (2015) Oxygen defects in phosphorene. Phys Rev Lett 114:046801. https://doi.org/10.1103/PhysRevLett.114.046801

    Article  CAS  Google Scholar 

  33. Wang Y, Yang B, Wan B et al (2016) Degradation of black phosphorus: a real-time 31P NMR study. 2D Mater 3:035025. https://doi.org/10.1088/2053-1583/3/3/035025

    Article  CAS  Google Scholar 

  34. Laurent BS, Dey D, Yu L et al (2021) Atomic-scale investigation of oxidation at the black phosphorus surface. ACS Appl Electron Mater 3:4066–4072. https://doi.org/10.1021/acsaelm.1c00558

    Article  CAS  Google Scholar 

  35. Zhang S, Zhang X, Lei L et al (2019) pH-dependent degradation of layered black phosphorus: essential role of hydroxide ions. Angew Chem Int Ed 58:467–471. https://doi.org/10.1002/anie.201809989

    Article  CAS  Google Scholar 

  36. Zhang D, Liu HM, Shu X et al (2020) Nanocopper-loaded black phosphorus nanocomposites for efficient synergistic antibacterial application. J Hazard Mater 393:122317. https://doi.org/10.1016/j.jhazmat.2020.122317

    Article  CAS  Google Scholar 

  37. Chen W, Du W, Zhang H et al (2022) Hemin-loaded black phosphorus-based nanosystem for enhanced photodynamic therapy and a synergistic photothermally/photodynamically activated inflammatory immune response. Biomater Adv 140:213091. https://doi.org/10.1016/j.bioadv.2022.213091

    Article  CAS  Google Scholar 

  38. Shaw ZL, Kuriakose S, Cheeseman S et al (2021) Broad-spectrum solvent-free layered black phosphorus as a rapid action antimicrobial. ACS Appl Mater Interfaces 13:17340–17352. https://doi.org/10.1021/acsami.1c01739

    Article  CAS  Google Scholar 

  39. Liu Y, Li Z, Fan F et al (2021) Boosting antitumor sonodynamic therapy efficacy of black phosphorus via covalent functionalization. Adv Sci 8:e2102422. https://doi.org/10.1002/advs.202102422

    Article  CAS  Google Scholar 

  40. Kuntz KL, Wells RA, Hu J et al (2017) Control of surface and edge oxidation on phosphorene. ACS Appl Mater Interfaces 9:9126–9135. https://doi.org/10.1021/acsami.6b16111

    Article  CAS  Google Scholar 

  41. Guan J, Zhu Z, Tomanek D (2014) Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. Phys Rev Lett 113:046804. https://doi.org/10.1103/PhysRevLett.113.046804

    Article  CAS  Google Scholar 

  42. Zhu Z, Tomanek D (2014) Semiconducting layered blue phosphorus: a computational study. Phys Rev Lett 112:176802. https://doi.org/10.1103/PhysRevLett.112.176802

    Article  CAS  Google Scholar 

  43. Wu M, Fu H, Zhou L et al (2015) Nine new phosphorene polymorphs with non-honeycomb structures: a much extended family. Nano Lett 15:3557–3562. https://doi.org/10.1021/acs.nanolett.5b01041

    Article  CAS  Google Scholar 

  44. Zhang L, Huang H, Zhang B et al (2020) Structure and properties of violet phosphorus and its phosphorene exfoliation. Angew Chem Int Ed 59:1074–1080. https://doi.org/10.1002/anie.201912761

    Article  CAS  Google Scholar 

  45. Zhang C, Lian J, Yi W et al (2009) Surface structures of black phosphorus investigated with scanning tunneling microscopy. J Phys Chem C 113:18823–18826. https://doi.org/10.1021/jp907062n

    Article  CAS  Google Scholar 

  46. Mao N, Lin Y, Bie YQ et al (2021) Resonance-enhanced excitation of interlayer vibrations in atomically thin black phosphorus. Nano Lett 21:4809–4815. https://doi.org/10.1021/acs.nanolett.1c00917

    Article  CAS  Google Scholar 

  47. Morita A (1986) Semiconducting black phosphorus. Appl Phys A 39:227–242. https://doi.org/10.1007/BF00617267

    Article  Google Scholar 

  48. Castellanos-Gomez A, Vicarelli L, Prada E et al (2014) Isolation and characterization of few-layer black phosphorus. 2D Mater 1:025001. https://doi.org/10.1088/2053-1583/1/2/025001

    Article  CAS  Google Scholar 

  49. Zhang T, Wan Y, Xie H et al (2018) Degradation chemistry and stabilization of exfoliated few-layer black phosphorus in water. J Am Chem Soc 140:7561–7567. https://doi.org/10.1021/jacs.8b02156

    Article  CAS  Google Scholar 

  50. Kwon H, Seo SW, Kim TG et al (2016) Ultrathin and flat layer black phosphorus fabricated by reactive oxygen and water rinse. ACS Nano 10:8723–8731. https://doi.org/10.1021/acsnano.6b04194

    Article  CAS  Google Scholar 

  51. Ahmed T, Balendhran S, Karim MN et al (2017) Degradation of black phosphorus is contingent on UV–blue light exposure. npj 2D Mater Appl 1:18. https://doi.org/10.1038/s41699-017-0023-5

    Article  Google Scholar 

  52. Walia S, Sabri Y, Ahmed T et al (2016) Defining the role of humidity in the ambient degradation of few-layer black phosphorus. 2D Mater 4:015025. https://doi.org/10.1088/2053-1583/4/1/015025

    Article  CAS  Google Scholar 

  53. Wang H, Yang X, Shao W et al (2015) Ultrathin black phosphorus nanosheets for efficient singlet oxygen generation. J Am Chem Soc 137:11376–11382. https://doi.org/10.1021/jacs.5b06025

    Article  CAS  Google Scholar 

  54. Kim S, Jung Y, Lee JY et al (2016) In situ thickness control of black phosphorus field-effect transistors via ozone treatment. Nano Res 9:3056–3065. https://doi.org/10.1007/s12274-016-1188-5

    Article  CAS  Google Scholar 

  55. He D, Zhang Z, Xing Y et al (2020) Black phosphorus/graphitic carbon nitride: a metal-free photocatalyst for “green” photocatalytic bacterial inactivation under visible light. Chem Eng J 384:123258. https://doi.org/10.1016/j.cej.2019.123258

    Article  CAS  Google Scholar 

  56. He D, Jin D, Cheng F et al (2022) Development of a metal-free black phosphorus/graphitic carbon nitride heterostructure for visible-light-driven degradation of indomethacin. Sci Total Environ 804:150062. https://doi.org/10.1016/j.scitotenv.2021.150062

    Article  CAS  Google Scholar 

  57. Jana D, Jia S, Bindra AK et al (2020) Clearable black phosphorus nanoconjugate for targeted cancer phototheranostics. ACS Appl Mater Interfaces 12:18342–18351. https://doi.org/10.1021/acsami.0c02718

    Article  CAS  Google Scholar 

  58. Ding Q, Sun T, Su W et al (2022) Bioinspired multifunctional black phosphorus hydrogel with antibacterial and antioxidant properties: a stepwise countermeasure for diabetic skin wound healing. Adv Healthc Mater 11:e2102791. https://doi.org/10.1002/adhm.202102791

    Article  CAS  Google Scholar 

  59. Huang J, He B, Zhang Z et al (2020) Aggregation-induced emission luminogens married to 2D black phosphorus nanosheets for highly efficient multimodal theranostics. Adv Mater 32:e2003382. https://doi.org/10.1002/adma.202003382

    Article  CAS  Google Scholar 

  60. Liang M, Zhang M, Yu S et al (2020) Silver-laden black phosphorus nanosheets for an efficient in vivo antimicrobial application. Small 16:e1905938. https://doi.org/10.1002/smll.201905938

    Article  CAS  Google Scholar 

  61. Li Z, Zhao C, Fu Q et al (2022) Neodymium (3+)-coordinated black phosphorus quantum dots with retrievable NIR/X-ray optoelectronic switching effect for anti-glioblastoma. Small 18:e2105160. https://doi.org/10.1002/smll.202105160

    Article  CAS  Google Scholar 

  62. Qi F, Ji P, Chen Z et al (2021) Photosynthetic cyanobacteria-hybridized black phosphorus nanosheets for enhanced tumor photodynamic therapy. Small 17:e2102113. https://doi.org/10.1002/smll.202102113

    Article  CAS  Google Scholar 

  63. Edmonds MT, Tadich A, Carvalho A et al (2015) Creating a stable oxide at the surface of black phosphorus. ACS Appl Mater Interfaces 7:14557–14562. https://doi.org/10.1021/acsami.5b01297

    Article  CAS  Google Scholar 

  64. Wang G, Pandey R, Karna SP (2015) Phosphorene oxide: stability and electronic properties of a novel two-dimensional material. Nanoscale 7:524–531. https://doi.org/10.1039/c4nr05384b

    Article  CAS  Google Scholar 

  65. Luo W, Zemlyanov DY, Milligan CA et al (2016) Surface chemistry of black phosphorus under a controlled oxidative environment. Nanotechnology 27:434002. https://doi.org/10.1088/0957-4484/27/43/434002

    Article  CAS  Google Scholar 

  66. Grasseschi D, Bahamon D, Maia F et al (2017) Oxygen impact on the electronic and vibrational properties of black phosphorus probed by synchrotron infrared nanospectroscopy. 2D Mater 4:035028. https://doi.org/10.1088/2053-1583/aa8210

    Article  CAS  Google Scholar 

  67. Plutnar J, Sofer Z, Pumera M (2018) Products of degradation of black phosphorus in protic solvents. ACS Nano 12:8390–8396. https://doi.org/10.1021/acsnano.8b03740

    Article  CAS  Google Scholar 

  68. Kim DK, Chae J, Hong SB et al (2018) Interface engineering for a stable chemical structure of oxidized-black phosphorus via self-reduction in AlOx atomic layer deposition. Nanoscale 10:22896–22907. https://doi.org/10.1039/c8nr06652c

    Article  CAS  Google Scholar 

  69. Niu X, Li Y, Zhang Y et al (2018) Photo-oxidative degradation and protection mechanism of black phosphorus: insights from ultrafast dynamics. J Phys Chem Lett 9:5034–5039. https://doi.org/10.1021/acs.jpclett.8b02060

    Article  CAS  Google Scholar 

  70. Huang Y, Qiao J, He K et al (2016) Interaction of black phosphorus with oxygen and water. Chem Mater 28:8330–8339. https://doi.org/10.1021/acs.chemmater.6b03592

    Article  CAS  Google Scholar 

  71. Kistanov AA, Cai Y, Zhou K et al (2016) The role of H2O and O2 molecules and phosphorus vacancies in the structure instability of phosphorene. 2D Mater 4:015010. https://doi.org/10.1088/2053-1583/4/1/015010

    Article  CAS  Google Scholar 

  72. Naclerio AE, Zakharov DN, Kumar J et al (2020) Visualizing oxidation mechanisms in few-layered black phosphorus via in situ transmission electron microscopy. ACS Appl Mater Interfaces 12:15844–15854. https://doi.org/10.1021/acsami.9b21116

    Article  CAS  Google Scholar 

  73. Elbadawi C, Queralt RT, Xu ZQ et al (2018) Encapsulation-free stabilization of few-layer black phosphorus. ACS Appl Mater Interfaces 10:24327–24331. https://doi.org/10.1021/acsami.8b04180

    Article  CAS  Google Scholar 

  74. Wang G, Slough WJ, Pandey R et al (2016) Degradation of phosphorene in air: understanding at atomic level. 2D Mater 3:025011. https://doi.org/10.1088/2053-1583/3/2/025011

    Article  CAS  Google Scholar 

  75. Kumar J, Shrivastava M (2022) First-principles molecular dynamics insight into the atomic level degradation pathway of phosphorene. ACS Omega 7:696–704. https://doi.org/10.1021/acsomega.1c05353

    Article  CAS  Google Scholar 

  76. Oh KH, Jung SW, Kim KS (2020) Tracing the initial state of surface oxidation in black phosphorus. Appl Surf Sci 504:144341. https://doi.org/10.1016/j.apsusc.2019.144341

    Article  CAS  Google Scholar 

  77. Wang S, Li J, Zhao Y et al (2020) Effective passivation of black phosphorus against atmosphere by quasi-monolayer of F4TCNQ molecules. Appl Phys Lett 117:061602. https://doi.org/10.1063/5.0015119

    Article  CAS  Google Scholar 

  78. Wang C, Niu D, Wang S et al (2018) Energy level evolution and oxygen exposure of fullerene/black phosphorus interface. J Phys Chem Lett 9:5254–5261. https://doi.org/10.1021/acs.jpclett.8b02293

    Article  CAS  Google Scholar 

  79. Li W, Wang Z, Zhao F et al (2020) Phosphorene degradation: visualization and quantification of nanoscale phase evolution by scanning transmission X-ray microscopy. Chem Mater 32:1272–1280. https://doi.org/10.1021/acs.chemmater.9b04811

    Article  CAS  Google Scholar 

  80. Yang T, Dong B, Wang J et al (2015) Interpreting core-level spectra of oxidizing phosphorene: theory and experiment. Phys Rev B 92:125412. https://doi.org/10.1103/PhysRevB.92.125412

    Article  CAS  Google Scholar 

  81. Gómez-Pérez JF, Correa JD, Pravda CB et al (2020) Dangling-to-interstitial oxygen transition and its modifications of the electronic structure in few-layer phosphorene. J Phys Chem C 124:24066–24072. https://doi.org/10.1021/acs.jpcc.0c06542

    Article  CAS  Google Scholar 

  82. Zhang L, Vasenko AS, Zhao J et al (2019) Mono-elemental properties of 2D black phosphorus ensure extended charge carrier lifetimes under oxidation: time-domain ab initio analysis. J Phys Chem Lett 10:1083–1091. https://doi.org/10.1021/acs.jpclett.9b00042

    Article  CAS  Google Scholar 

  83. Zhang Z, Li S, Qiao D et al (2021) Black phosphorus nanosheet encapsulated by zeolitic imidazole framework-8 for tumor multimodal treatments. ACS Appl Mater Interfaces 13:43855–43867. https://doi.org/10.1021/acsami.1c04001

    Article  CAS  Google Scholar 

  84. Yan S, Song H, Wan LF et al (2020) Hydroxyl-assisted phosphorene stabilization with robust device performances. Nano Lett 20:81–87. https://doi.org/10.1021/acs.nanolett.9b03115

    Article  CAS  Google Scholar 

  85. Zhao Y, Sun Z, Zhang B et al (2022) Unveiling the degradation chemistry of fibrous red phosphorus under ambient conditions. ACS Appl Mater Interfaces 14:9925–9932. https://doi.org/10.1021/acsami.1c24883

    Article  CAS  Google Scholar 

  86. Hu W, Yang J (2015) Defects in Phosphorene. J Phys Chem C 119:20474–20480. https://doi.org/10.1021/acs.jpcc.5b06077

    Article  CAS  Google Scholar 

  87. Zhang R, Wu X, Yang J (2016) Blockage of ultrafast and directional diffusion of Li atoms on phosphorene with intrinsic defects. Nanoscale 8:4001–4006. https://doi.org/10.1039/c5nr06856h

    Article  CAS  Google Scholar 

  88. Gaberle J, Shluger AL (2018) Structure and properties of intrinsic and extrinsic defects in black phosphorus. Nanoscale 10:19536–19546. https://doi.org/10.1039/c8nr06640j

    Article  CAS  Google Scholar 

  89. Pei W, Zhou S, Zhao J et al (2020) Optimization of photocarrier dynamics and activity in phosphorene with intrinsic defects for nitrogen fixation. J Mater Chem A 8:20570–20580. https://doi.org/10.1039/D0TA08553G

    Article  CAS  Google Scholar 

  90. Kripalani DR, Cai Y, Xue M et al (2019) Metastable interlayer Frenkel pair defects in black phosphorus. Phys Rev B 100:224107. https://doi.org/10.1103/PhysRevB.100.224107

    Article  CAS  Google Scholar 

  91. Kundu S, Naik MH, Jain M (2020) Native point defects in mono and bilayer phosphorene. Phys Rev Mater 4:054004. https://doi.org/10.1103/PhysRevMaterials.4.054004

    Article  CAS  Google Scholar 

  92. Rijal B, Tan AMZ, Freysoldt C et al (2021) Charged vacancy defects in monolayer phosphorene. Phys Rev Mater 5:124004. https://doi.org/10.1103/PhysRevMaterials.5.124004

    Article  CAS  Google Scholar 

  93. Podlivaev AI, Openov LA (2015) Out-of-plane path of the Stone-Wales transformation in graphene. Phys Lett A 379:1757–1761. https://doi.org/10.1016/j.physleta.2015.04.010

    Article  CAS  Google Scholar 

  94. Banhart F, Kotakoski J, Krasheninnikov AV (2011) Structural defects in graphene. ACS Nano 5:26–41. https://doi.org/10.1021/nn102598m

    Article  CAS  Google Scholar 

  95. Kiraly B, Hauptmann N, Rudenko AN et al (2017) Probing single vacancies in black phosphorus at the atomic level. Nano Lett 17:3607–3612. https://doi.org/10.1021/acs.nanolett.7b00766

    Article  CAS  Google Scholar 

  96. Li X, Ma L, Wang D et al (2016) Point defects in lines in single crystalline phosphorene: directional migration and tunable band gaps. Nanoscale 8:17801–17808. https://doi.org/10.1039/c6nr05414e

    Article  CAS  Google Scholar 

  97. Yao F, Cai Y, Xiao Z et al (2020) In situ transmission electron microscopy study of the formation and migration of vacancy defects in atomically thin black phosphorus. 2D Mater 8:025004. https://doi.org/10.1088/2053-1583/abce09

    Article  CAS  Google Scholar 

  98. Babar R, Kabir M (2019) Mechanistic insights in phosphorene degradation. Phys Rev Mater 3:074008. https://doi.org/10.1103/PhysRevMaterials.3.074008

    Article  CAS  Google Scholar 

  99. Huang J, Tao B, Zhang Q et al (2022) Defect-induced different band alignment and transport of all-phosphorene devices from first principles. ACS Appl Electron Mater 4:2070–2076. https://doi.org/10.1021/acsaelm.2c00212

    Article  CAS  Google Scholar 

  100. Sha ZD, Pei QX, Wan Q et al (2017) Failure mechanism of phosphorene by nanoindentation. J Phys Chem C 121:4708–4713. https://doi.org/10.1021/acs.jpcc.6b13071

    Article  CAS  Google Scholar 

  101. Zhan F, Xu W, Zou R et al (2019) Interplay of charged states and oxygen dissociation induced by vacancies in phosphorene. J Phys Chem C 123:27080–27087. https://doi.org/10.1021/acs.jpcc.9b08518

    Article  CAS  Google Scholar 

  102. Utt KL, Rivero P, Mehboudi M et al (2015) Intrinsic defects, fluctuations of the local shape, and the photo-oxidation of black phosphorus. ACS Cent Sci 1:320–327. https://doi.org/10.1021/acscentsci.5b00244

    Article  CAS  Google Scholar 

  103. Yang S, Kim A, Park J et al (2018) Thermal annealing of black phosphorus for etching and protection. Appl Surf Sci 457:773–779. https://doi.org/10.1016/j.apsusc.2018.06.242

    Article  CAS  Google Scholar 

  104. Zhao J, Zhang X, Zhao Q et al (2022) Unique interaction between layered black phosphorus and nitrogen dioxide. Nanomaterials 12:2011. https://doi.org/10.3390/nano12122011

    Article  CAS  Google Scholar 

  105. Zhang L, Chu W, Zheng Q et al (2019) Suppression of electron-hole recombination by intrinsic defects in 2D monoelemental material. J Phys Chem Lett 10:6151–6158. https://doi.org/10.1021/acs.jpclett.9b02620

    Article  CAS  Google Scholar 

  106. Wei Y, Long R (2018) Grain boundaries are benign and suppress nonradiative electron-hole recombination in monolayer black phosphorus: a time-domain ab initio study. J Phys Chem Lett 9:3856–3862. https://doi.org/10.1021/acs.jpclett.8b01654

    Article  CAS  Google Scholar 

  107. Ding LP, Ding F (2021) Self-passivation leads to semiconducting edges of black phosphorene. Nanoscale Horiz 6:148–155. https://doi.org/10.1039/d0nh00506a

    Article  CAS  Google Scholar 

  108. Zhang Y, Zhao Y, Bai Y et al (2021) Universal zigzag edge reconstruction of an alpha-phase puckered monolayer and its resulting robust spatial charge separation. Nano Lett 21:8095–8102. https://doi.org/10.1021/acs.nanolett.1c02461

    Article  CAS  Google Scholar 

  109. Ramasubramaniam A (2014) Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons. Phys Rev B 90:085424. https://doi.org/10.1103/PhysRevB.90.085424

    Article  CAS  Google Scholar 

  110. Lee Y, Lee S, Yoon JY et al (2020) Fabrication and imaging of monolayer phosphorene with preferred edge configurations via graphene-assisted layer-by-layer thinning. Nano Lett 20:559–566. https://doi.org/10.1021/acs.nanolett.9b04292

    Article  CAS  Google Scholar 

  111. Yao F, Xiao Z, Qiao J et al (2021) In situ TEM study of edge reconstruction and evolution in monolayer black phosphorus. Nanoscale 13:4133–4139. https://doi.org/10.1039/d0nr08798j

    Article  CAS  Google Scholar 

  112. Liu Y, Li D, Cui T (2021) Edge reconstructions of black phosphorene: a global search. Nanoscale 13:4085–4091. https://doi.org/10.1039/d0nr08505g

    Article  CAS  Google Scholar 

  113. Liang L, Wang J, Lin W et al (2014) Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett 14:6400–6406. https://doi.org/10.1021/nl502892t

    Article  CAS  Google Scholar 

  114. Gao J, Liu X, Zhang G et al (2016) Nanotube-terminated zigzag edges of phosphorene formed by self-rolling reconstruction. Nanoscale 8:17940–17946. https://doi.org/10.1039/c6nr06201f

    Article  CAS  Google Scholar 

  115. Lee S, Lee Y, Ding LP et al (2022) Atomically sharp, closed bilayer phosphorene edges by self-passivation. ACS Nano 16:12822–12830. https://doi.org/10.1021/acsnano.2c05014

    Article  CAS  Google Scholar 

  116. Nan H, Wang X, Jiang J et al (2021) Effect of the surface oxide layer on the stability of black phosphorus. Appl Surf Sci 537:147850. https://doi.org/10.1016/j.apsusc.2020.147850

    Article  CAS  Google Scholar 

  117. Moschetto S, Bolognesi M, Prescimone F et al (2021) Large-area oxidized phosphorene nanoflakes obtained by electrospray for energy-harvesting applications. ACS Appl Nano Mater 4:3476–3485. https://doi.org/10.1021/acsanm.0c03465

    Article  CAS  Google Scholar 

  118. Gómez-Pérez J, Bartus CP, Szamosvölgyi Á et al (2021) Electronic work function modulation of phosphorene by thermal oxidation. 2D Mater 9:015003. https://doi.org/10.1088/2053-1583/ac2f21

    Article  CAS  Google Scholar 

  119. Gui R, Jin H, Wang Z et al (2018) Black phosphorus quantum dots: synthesis, properties, functionalized modification and applications. Chem Soc Rev 47:6795–6823. https://doi.org/10.1039/c8cs00387d

    Article  CAS  Google Scholar 

  120. Wu S, He F, Xie G et al (2018) Black phosphorus: degradation favors lubrication. Nano Lett 18:5618–5627. https://doi.org/10.1021/acs.nanolett.8b02092

    Article  CAS  Google Scholar 

  121. Chen H, Liu Z, Wei B et al (2021) Redox responsive nanoparticle encapsulating black phosphorus quantum dots for cancer theranostics. Bioact Mater 6:655–665. https://doi.org/10.1016/j.bioactmat.2020.08.034

    Article  CAS  Google Scholar 

  122. Fang Y, Zhang Z, Liu Y et al (2022) Artificial assembled macrophage Co-deliver black phosphorus quantum dot and CDK4/6 inhibitor for colorectal cancer triple-therapy. ACS Appl Mater Interfaces 14:20628–20640. https://doi.org/10.1021/acsami.2c01305

    Article  CAS  Google Scholar 

  123. Chen X, Wu Y, Wu Z et al (2015) High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat Commun 6:7315. https://doi.org/10.1038/ncomms8315

    Article  CAS  Google Scholar 

  124. Wu BB, Zheng HM, Ding YQ et al (2017) Direct growth of Al2O3 on black phosphorus by plasma-enhanced atomic layer deposition. Nanoscale Res Lett 12:282. https://doi.org/10.1186/s11671-017-2016-x

    Article  CAS  Google Scholar 

  125. Wu D, Peng Z, Jin C et al (2019) Effective passivation of black phosphorus transistor against ambient degradation by an ultra-thin tin oxide film. Sci Bull 64:570–574. https://doi.org/10.1016/j.scib.2019.04.021

    Article  CAS  Google Scholar 

  126. Liu X, Bai Y, Xu J et al (2019) Robust amphiphobic few-layer black phosphorus nanosheet with improved stability. Adv Sci 6:1901991. https://doi.org/10.1002/advs.201901991

    Article  CAS  Google Scholar 

  127. Liu Y, Gao P, Zhang T et al (2019) Azide passivation of black phosphorus nanosheets: covalent functionalization affords ambient stability enhancement. Angew Chem Int Ed 58:1479–1483. https://doi.org/10.1002/anie.201813218

    Article  CAS  Google Scholar 

  128. Walia S, Balendhran S, Ahmed T et al (2017) Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv Mater 29:1700152. https://doi.org/10.1002/adma.201700152

    Article  CAS  Google Scholar 

  129. Hsieh YL, Su WH, Huang CC et al (2020) In situ cleaning and fluorination of black phosphorus for enhanced performance of transistors with high stability. ACS Appl Mater Interfaces 12:37375–37383. https://doi.org/10.1021/acsami.0c11129

    Article  CAS  Google Scholar 

  130. Liu M, Feng S, Hou Y et al (2020) High yield growth and doping of black phosphorus with tunable electronic properties. Mater Today 36:91–101. https://doi.org/10.1016/j.mattod.2019.12.027

    Article  CAS  Google Scholar 

  131. Pradhan NR, Garcia C, Lucking MC et al (2019) Raman and electrical transport properties of few-layered arsenic-doped black phosphorus. Nanoscale 11:18449–18463. https://doi.org/10.1039/c9nr04598h

    Article  CAS  Google Scholar 

  132. Liu Q, Hu S, Zhang C et al (2020) Polarization-dependent and wavelength-tunable optical limiting and transparency of multilayer selenium-doped black phosphorus. Adv Opt Mater 9:2001562. https://doi.org/10.1002/adom.202001562

    Article  CAS  Google Scholar 

  133. Li M, Li W, Chen N et al (2021) Revealing dopant local structure of se-doped black phosphorus. Chem Mater 33:2029–2036. https://doi.org/10.1021/acs.chemmater.0c04072

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12204532 and 52174137), the Natural Science Foundation of Jiangsu Province (BK20200648), the Innovative and Entrepreneurial Doctor Funding of Jiangsu (140921014 and 140921029), and the Fundamental Research Funds for the Central Universities, China (2020QN25 and 2020QN23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Pang.

Ethics declarations

Conflict of interest

The author declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We have read and understood your journal’s ethical policies, and we believe that neither the manuscript nor the study violates any of these. No ethical approval is required.

Additional information

Handling Editor: David Cann.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, Q., Pang, X. Exploring the oxidation mechanisms of black phosphorus: a review. J Mater Sci 58, 2068–2086 (2023). https://doi.org/10.1007/s10853-023-08171-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08171-6

Navigation