Skip to main content
Log in

2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Phosphorene, especially black phosphorus (BP), has attracted considerable attention due to the unique characteristics, such as tunable direct bandgap, high carrier mobility, and strong in-plane anisotropy. Recently, a new modification strategy for black phosphorus has been developed by alloying black phosphorus with the congener element arsenic. The elemental composition tuning of black phosphorus with arsenic can not only maintain its special crystal structure and high anisotropy but also modify its electrical and optical properties for the further applications of multifunctional devices. The achieved two-dimensional (2D) black arsenic-phosphorus materials exhibit outstanding optical, electrical, and photoelectric properties, such as very narrow band gap, anisotropic infrared absorption, and bipolar transfer characteristics, presenting great potential in infrared photodetectors and high-performance field effect transistors (FETs). In this review, we introduce the recent progress made in the synthesis and applications of black arsenic-phosphorus, and provide an outlook and perspectives on the current challenges and future opportunities in this field. We hope that this review can bring new insights and inspirations on the further development of 2D black arsenic-phosphorus based materials and devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, S. L.; Guo, S. Y.; Chen, Z. F.; Wang, Y. L.; Gao, H. J.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021.

    Article  CAS  Google Scholar 

  2. Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341.

    Article  CAS  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  Google Scholar 

  4. Tao, W.; Kong, N.; Ji, X. Y.; Zhang, Y. P.; Sharma, A.; Ouyang, J.; Qi, B. W.; Wang, J. Q.; Xie, N.; Kang, C. et al. Emerging two-dimensional monoelemental materials (Xenes) for biomedical applications. Chem. Soc. Rev. 2019, 48, 2891–2912.

    Article  CAS  Google Scholar 

  5. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  6. Mannix, A. J.; Kiraly, B.; Hersam, M. C.; Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 0014.

    Article  CAS  Google Scholar 

  7. Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.

    Article  CAS  Google Scholar 

  8. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    Article  CAS  Google Scholar 

  9. Xie, Z. J.; Duo, Y. H.; Lin, Z. T.; Fan, T. J.; Xing, C. Y.; Yu, L.; Wang, R. H.; Qiu, M.; Zhang, Y. P.; Zhao, Y. H. et al. The rise of 2D Photothermal materials beyond graphene for clean water production. Adv. Sci. 2020, 7, 1902236.

    Article  CAS  Google Scholar 

  10. Chen, P. F.; Li, N.; Chen, X. Z.; Ong, W. J.; Zhao, X. J. The rising star of 2D black phosphorus beyond graphene: Synthesis, properties and electronic applications. 2D Mater. 2018, 5, 014002.

    Article  Google Scholar 

  11. Le Lay, G.; Salomon, E.; De Padova, P.; Layet, J. M.; Angot, T. The rise of elemental two-dimensional materials beyond graphene. Aust. J. Chem. 2014, 67, 1370–1372.

    Article  CAS  Google Scholar 

  12. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  Google Scholar 

  13. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

    Article  CAS  Google Scholar 

  14. Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

    Article  CAS  Google Scholar 

  15. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  16. Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

    Article  CAS  Google Scholar 

  17. Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442.

    Article  CAS  Google Scholar 

  18. Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.

    Article  CAS  Google Scholar 

  19. Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

    Article  CAS  Google Scholar 

  20. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  Google Scholar 

  21. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    Article  CAS  Google Scholar 

  22. Qiao, J. S.; Kong, X. H.; Hu, Z. X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475.

    Article  CAS  Google Scholar 

  23. Li, X. S.; Zhu, Y. W.; Cai, W. W.; Borysiak, M.; Han, B. Y.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363.

    Article  CAS  Google Scholar 

  24. Hsieh, D.; Qian, D.; Wray, L.; Xia, Y.; Hor, Y. S.; Cava, R. J.; Hasan, M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 2008, 452, 970–974.

    Article  CAS  Google Scholar 

  25. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  CAS  Google Scholar 

  26. Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.

    Article  CAS  Google Scholar 

  27. Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  28. Reserbat-Plantey, A.; Epstein, I.; Torre, I.; Costa, A. T.; Goncalves, P. A. D.; Mortensen, N. A.; Polini, M.; Song, J. C. W.; Peres, N. M. R.; Koppens, F. H. L. Quantum nanophotonics in two-dimensional materials. ACS Photonics 2021, 8, 85–101.

    Article  CAS  Google Scholar 

  29. Zhao, H.; Guo, Q. S.; Xia, F. N.; Wang, H. Two-dimensional materials for nanophotonics application. Nanophotonics 2015, 4, 128–142.

    Article  Google Scholar 

  30. Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.

    Article  CAS  Google Scholar 

  31. Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

    Article  CAS  Google Scholar 

  32. Fu, W. Y.; Jiang, L.; van Geest, E. P.; Lima, L. M. C.; Schneider, G. F. Sensing at the surface of graphene field-effect transistors. Adv. Mater. 2017, 29, 1603610.

    Article  Google Scholar 

  33. Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samori, P. Chemical sensing with 2D materials. Chem. Soc. Rev. 2018, 47, 4860–4908.

    Article  CAS  Google Scholar 

  34. Qiu, M.; Ren, W. X.; Jeong, T.; Won, M.; Park, G. Y.; Sang, D. K.; Liu, L. P.; Zhang, H.; Kim, J. S. Omnipotent phosphorene: A next-generation, two-dimensional nanoplatform for multidisciplinary biomedical applications. Chem. Soc. Rev. 2018, 47, 5588–5601.

    Article  CAS  Google Scholar 

  35. Chen, Y.; Tan, C. L.; Zhang, H.; Wang, L. Z. Two-dimensional graphene analogues for biomedical applications. Chem. Soc. Rev. 2015, 44, 2681–2701.

    Article  CAS  Google Scholar 

  36. Li, C. L.; Cao, Q.; Wang, F. Z.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J.; Zhu, H. W. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981–5037.

    Article  CAS  Google Scholar 

  37. Chen, K.; Shi, L. R.; Zhang, Y. F.; Liu, Z. F. Scalable chemical-vapour-deposition growth of three-dimensional graphene materials towards energy-related applications. Chem. Soc. Rev. 2018, 47, 3018–3036.

    Article  CAS  Google Scholar 

  38. Li, L. K.; Yu, Y. J.; Ye, G. J.; Ge, Q. Q.; Ou, X. D.; Wu, H.; Feng, D. L.; Chen, X. H.; Zhang, Y. B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377.

    Article  CAS  Google Scholar 

  39. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X. F.; Tománek, D.; Ye, P. D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041.

    Article  CAS  Google Scholar 

  40. Xia, F. N.; Wang, H.; Jia, Y. C. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458.

    Article  CAS  Google Scholar 

  41. Castellanos-Gomez, A.; Vicarelli, L.; Prada, E.; Island, J. O.; Narasimha-Acharya, K. L.; Blanter, S. I.; Groenendijk, D. J.; Buscema, M.; Steele, G. A.; Alvarez, J. V. et al. Isolation and characterization of few-layer black phosphorus. 2D Mater. 2014, 1, 025001.

    Article  CAS  Google Scholar 

  42. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    Article  CAS  Google Scholar 

  43. Rodin, A. S.; Carvalho, A.; Castro Neto, A. H. Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 2014, 112, 176801.

    Article  CAS  Google Scholar 

  44. Chen, Y. B.; Chen, C. Y.; Kealhofer, R.; Liu, H. L.; Yuan, Z. Q.; Jiang, L. L.; Suh, J.; Park, J.; Ko, C.; Choe, H. S. et al. Black arsenic: A layered semiconductor with extreme in-plane anisotropy. Adv. Mater. 2018, 30, 1800754.

    Article  Google Scholar 

  45. Young, E. P.; Park, J.; Bai, T. Y.; Choi, C.; DeBlock, R. H.; Lange, M.; Poust, S.; Tice, J.; Cheung, C.; Dunn, B. S. et al. Wafer-scale black arsenic-phosphorus thin-film synthesis validated with density functional perturbation theory predictions. ACS Appl. Nano Mater. 2018, 1, 4737–4745.

    Article  CAS  Google Scholar 

  46. Shi, X. Y.; Wang, T.; Wang, J.; Xu, Y. J.; Yang, Z. Y.; Yu, Q.; Wu, J.; Zhang, K.; Zhou, P. Synthesis of black arsenic-phosphorus and its application for Er-doped fiber ultrashort laser generation. Opt. Mater. Express 2019, 9, 2348–2357.

    Article  CAS  Google Scholar 

  47. Luxa, J.; Bouša, D.; Zoller, F.; Fattakhova-Rohlfing, D.; Sofer, Z. Black phosphorus-arsenic alloys for lithium ion batteries. FlatChem 2020, 19, 100143.

    Article  CAS  Google Scholar 

  48. Long, M. S.; Gao, A. Y.; Wang, P.; Xia, H.; Ott, C.; Pan, C.; Fu, Y. J.; Liu, E. F.; Chen, X. S.; Lu, W. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 2017, 3, e1700589.

    Article  Google Scholar 

  49. Yuan, S. F.; Shen, C. F.; Deng, B. C.; Chen, X. L.; Guo, Q. S.; Ma, Y. Q.; Abbas, A.; Liu, B. L.; Haiges, R.; Ott, C. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/Black arsenic phosphorus/hBN heterostructures. Nano Lett. 2018, 18, 3172–3179.

    Article  CAS  Google Scholar 

  50. Liu, B. L.; Köpf, M.; Abbas, A. N.; Wang, X. M.; Guo, Q. S.; Jia, Y. C.; Xia, F. N.; Weihrich, R.; Bachhuber, F.; Pielnhofer, F. et al. Black arsenic-phosphorus: Layered anisotropic infrared semiconductors with highly tunable compositions and properties. Adv. Mater. 2015, 27, 4423–4429.

    Article  CAS  Google Scholar 

  51. Amani, M.; Regan, E.; Bullock, J.; Ahn, G. H.; Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 2017, 11, 11724–11731.

    Article  CAS  Google Scholar 

  52. Shu, Y. Q.; Guo, J.; Fan, T. J.; Xu, Y. J.; Guo, P. L.; Wang, Z. H.; Wu, L. M.; Ge, Y. Q.; Lin, Z. T.; Ma, D. T. et al. Two-dimensional black arsenic phosphorus for ultrafast photonics in near- and mid-infrared regimes. ACS Appl. Mater. Interfaces 2020, 12, 46509–46518.

    Article  CAS  Google Scholar 

  53. Karki, B.; Rajapakse, M.; Sumanasekera, G. U.; Jasinski, J. B. Structural and thermoelectric properties of black arsenic-phosphorus. ACS Appl. Energy Mater. 2020, 3, 8543–8551.

    Article  CAS  Google Scholar 

  54. Liu, Y. J.; Wang, H. D.; Wang, S.; Wang, Y. J.; Wang, Y. Z.; Guo, Z. N.; Xiao, S. M.; Yao, Y.; Song, Q. H.; Zhang, H. et al. Highly efficient silicon photonic microheater based on black arsenic-phosphorus. Adv. Opt. Mater. 2020, 8, 1901526.

    Article  CAS  Google Scholar 

  55. Yu, L.; Zhu, Z.; Gao, A. Y.; Wang, J. Z.; Miao, F.; Shi, Y.; Wang, X. M. Electrically tunable optical properties of few-layer black arsenic phosphorus. Nanotechnology 2018, 29, 484001.

    Article  Google Scholar 

  56. Zhou, W. H.; Zhang, S. L.; Wang, Y. Y.; Guo, S. Y.; Qu, H. Z.; Bai, P. X.; Li, Z.; Zeng, H. B. Anisotropic in-plane ballistic transport in monolayer black arsenic-phosphorus FETs. Adv. Electron. Mater. 2020, 6, 1901281.

    Article  CAS  Google Scholar 

  57. Xie, M. Q.; Zhang, S. L.; Cai, B.; Huang, Y.; Zou, Y. S.; Guo, B.; Gu, Y.; Zeng, H. B. A promising two-dimensional solar cell donor: Black arsenic-phosphorus monolayer with 1.54 eV direct bandgap and mobility exceeding 14,000 cm2/(V·s). Nano Energy 2016, 28, 433–439.

    Article  CAS  Google Scholar 

  58. Osters, O.; Nilges, T.; Bachhuber, F.; Pielnhofer, F.; Weihrich, R.; Schoneich, M.; Schmidt, P. Synthesis and identification of metastable compounds: Black arsenic-science or fiction? Angew. Chem., Int. Ed. 2012, 51, 2994–2997.

    Article  CAS  Google Scholar 

  59. Zhu, Z.; Guan, J.; Tománek, D. Structural transition in layered As1−xPx compounds: A computational study. Nano Lett. 2015, 15, 6042–6046.

    Article  CAS  Google Scholar 

  60. Bouša, D.; Otyepková, E.; Lazar, P.; Otyepka, M.; Sofer, Z. Surface energy of black phosphorus alloys with arsenic. ChemNanoMat 2020, 6, 821–826.

    Article  Google Scholar 

  61. Du, H. W.; Lin, X.; Xu, Z. M.; Chu, D. W. Recent developments in black phosphorus transistors. J. Mater. Chem. C 2015, 3, 8760–8775.

    Article  CAS  Google Scholar 

  62. Lu, J. P.; Yang, J.; Carvalho, A.; Liu, H. W.; Lu, Y. R.; Sow, C. H. Light-matter interactions in phosphorene. Acc. Chem. Res. 2016, 49, 1806–1815.

    Article  CAS  Google Scholar 

  63. Rudenko, A. N.; Katsnelson, M. I. Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus. Phys. Rev. B 2014, 89, 201408(R).

    Article  Google Scholar 

  64. Jamdagni, P.; Thakur, A.; Kumar, A.; Ahluwalia, P. K.; Pandey, R. Two dimensional allotropes of arsenene with a wide range of high and anisotropic carrier mobility. Phys. Chem. Chem. Phys. 2018, 20, 29939–29950.

    Article  CAS  Google Scholar 

  65. Zhang, P.; Ma, J. Z.; Ishida, Y.; Zhao, L. X.; Xu, Q. N.; Lv, B. Q.; Yaji, K.; Chen, G. F.; Weng, H. M.; Dai, X. et al. Topologically entangled Rashba-split Shockley states on the surface of grey arsenic. Phys. Rev. Lett. 2017, 118, 046802.

    Article  Google Scholar 

  66. Zhang, S. L.; Yan, Z.; Li, Y. F.; Chen, Z. F.; Zeng, H. B. Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions. Angew. Chem., Int. Ed. 2015, 54, 3112–3115.

    Article  CAS  Google Scholar 

  67. Greaves, G. N.; Elliott, S. R.; Davis, E. A. Amorphous arsenic. Adv. Phys. 1979, 28, 49–141.

    Article  CAS  Google Scholar 

  68. Luo, K.; Chen, S. Y.; Duan, C. G. Indirect-direct band gap transition of two-dimensional arsenic layered semiconductors-cousins of black phosphorus. Sci. China Phys. Mech. Astron. 2015, 58, 87301.

    Article  Google Scholar 

  69. Tang, J. P.; Xiao, W. Z.; Wang, L. L. Stability and electronic structure of two-dimensional arsenic phosphide monolayer. Mater. Sci. Eng.:B 2018, 228, 206–212.

    Article  CAS  Google Scholar 

  70. Li, L. L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F. M.; Yagmurcukardes, M. Single-layer Janus black arsenic-phosphorus (b-AsP): Optical dichroism, anisotropic vibrational, thermal, and elastic properties. Phys. Rev. B 2020, 101, 134102.

    Article  CAS  Google Scholar 

  71. Shirotani, I.; Kawamura, H.; Tsuburaya, K.; Tachikawa, K. Superconductivity of phosphorus and phosphorus-arsenic alloy under high pressures. Jpn. J. Appl. Phys. 1987, 26, 921–922.

    Article  CAS  Google Scholar 

  72. Shirotani, I.; Shiba, S.; Takemura, K.; Shimomura, O.; Yagi, T. Pressure-induced phase transitions of phosphorus-arsenic alloys. Physica B:Condens. Matter 1993, 190, 169–176.

    Article  CAS  Google Scholar 

  73. Shirotani, I.; Mikami, J.; Adachi, T.; Katayama, Y.; Tsuji, K.; Kawamura, H.; Shimomura, O.; Nakajima, T. Phase transitions and superconductivity of black phosphorus and phosphorus-arsenic alloys at low temperatures and high pressures. Phys. Rev. B 1994, 50, 16274–16278.

    Article  CAS  Google Scholar 

  74. Nilges, T.; Kersting, M.; Pfeifer, T. A fast low-pressure transport route to large black phosphorus single crystals. J. Solid State Chem. 2008, 181, 1707–1711.

    Article  CAS  Google Scholar 

  75. Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 406, 6–10.

    Article  Google Scholar 

  76. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  77. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    Article  CAS  Google Scholar 

  78. Shu, Y. Q.; Li, J. Q.; Wu, L. M.; Lin, Z. T.; Ma, D. T. Mode-locked pulse generation based on black arsenic phosphorus in erbium-doped fiber lasers. In Proceedings of the IEEE 5th Optoelectronics Global Conference, Shenzhen, China, 2020, pp 155–157.

  79. Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

    Article  CAS  Google Scholar 

  80. Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T. et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620.

    Article  CAS  Google Scholar 

  81. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

    Article  CAS  Google Scholar 

  82. Erande, M. B.; Pawar, M. S.; Late, D. J. Humidity sensing and photodetection behavior of electrochemically exfoliated atomically thin-layered black phosphorus nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 11548–11556.

    Article  CAS  Google Scholar 

  83. Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem., Int. Ed. 2017, 56, 10443–10445.

    Article  CAS  Google Scholar 

  84. Xiao, H.; Zhao, M.; Zhang, J. J.; Ma, X. F.; Zhang, J.; Hu, T. J.; Tang, T.; Jia, J. F.; Wu, H. S. Electrochemical cathode exfoliation of bulky black phosphorus into few-layer phosphorene nanosheets. Electrochem. Commun. 2018, 89, 10–13.

    Article  CAS  Google Scholar 

  85. Li, L.; Zhang, D.; Deng, J. P.; Gou, Y. C.; Fang, J. F. Electrochemical exfoliation of two-dimensional layered black phosphorus and applications. J. Energy Chem. 2020, 49, 365–374.

    Article  Google Scholar 

  86. Shu, H. B.; Guo, J. Y. Electronic and optical properties of phosphorene-like arsenic phosphorus: A many-body study. Mater. Res. Express 2018, 5, 036302.

    Article  Google Scholar 

  87. Sun, J.; Lin, N.; Ren, H.; Tang, C.; Yang, L. T.; Zhao, X. The electronic structure, mechanical flexibility and carrier mobility of black arsenic-phosphorus monolayers: A first principles study. Phys. Chem. Chem. Phys. 2016, 18, 9779–9787.

    Article  CAS  Google Scholar 

  88. Menzel, R.; Lee, A.; Bismarck, A.; Shaffer, M. S. P. Inverse gas chromatography of as-received and modified carbon nanotubes. Langmuir 2009, 25, 8340–8348.

    Article  CAS  Google Scholar 

  89. Brendlé, E.; Dentzer, J.; Papirer, E. Variation of the surface properties of hematite upon heat treatment evidenced by inverse gas chromatography and temperature programmed desorption techniques: Influence of surface impurities and surface reconstruction. J. Colloid Interf. Sci. 1998, 199, 63–76.

    Article  Google Scholar 

  90. Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H. Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloids Surf. A:Physicochem. Eng. Aspects 2012, 399, 1–10.

    Article  CAS  Google Scholar 

  91. Mohammadi-Jam, S.; Waters, K. E. Inverse gas chromatography applications: A review. Adv. Colloid Interface Sci. 2014, 212, 21–44.

    Article  CAS  Google Scholar 

  92. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461.

    Article  CAS  Google Scholar 

  93. Smith, B.; Vermeersch, B.; Carrete, J.; Ou, E.; Kim, J.; Mingo, N.; Akinwande, D.; Shi, L. Temperature and thickness dependences of the anisotropic in-plane thermal conductivity of black phosphorus. Adv. Mater. 2017, 29, 1603756.

    Article  Google Scholar 

  94. Sun, Y. J.; Shuai, Z. G.; Wang, D. Lattice thermal conductivity of monolayer AsP from first-principles molecular dynamics. Phys. Chem. Chem. Phys. 2018, 20, 14024–14030.

    Article  CAS  Google Scholar 

  95. Burns, M. J.; Chaikin, P. M. Interaction effects and thermoelectric power in low-temperature hopping. J. Phys. C:Solid State Phys. 1985, 18, L743.

    Article  CAS  Google Scholar 

  96. Kang, Y. L.; Zhang, Q.; Fan, C. Z.; Hu, W. P.; Chen, C.; Zhang, L.; Yu, F. R.; Tian, Y. J.; Xu, B. High pressure synthesis and thermoelectric properties of polycrystalline Bi2Se3. J. Alloys Compd. 2017, 700, 223–227.

    Article  CAS  Google Scholar 

  97. Lin, J. M.; Chen, Y. C.; Yang, C. F.; Chen, W. Effect of substrate temperature on the thermoelectric properties of the Sb2Te3 thin films deposition by using thermal evaporation method. J. Nanomater. 2015, 2015, 1.

    Google Scholar 

  98. Todosiciuc, A.; Nicorici, A.; Condrea, E.; Warchulska, J. Electrical properties of lead telluride single crystals doped with Gd. In International Conference on Semiconductor, Sinaia, Romania, 2012, pp 269–272.

  99. Kim, S. I.; Bang, J.; An, J.; Hong, S.; Bang, G.; Shin, W. H.; Kim, T. W.; Lee, K. Effect of Br substitution on thermoelectric transport properties in layered SnSe2. J. Alloys Compd. 2021, 868, 159161.

    Article  CAS  Google Scholar 

  100. Zhu, B. B.; Chen, C.; Yao, Z. C.; Chen, J. Y.; Jia, C.; Wang, Z. H.; Tian, R. M.; Tao, L.; Xue, F.; Hng, H. H. Multiple doped ZnO with enhanced thermoelectric properties. J. Eur. Ceram. Soc. 2021, 41, 4182–4188.

    Article  CAS  Google Scholar 

  101. Kim, J.; Lee, J. U.; Lee, J.; Park, H. J.; Lee, Z.; Lee, C.; Cheong, H. Anomalous polarization dependence of Raman scattering and crystallographic orientation of black phosphorus. Nanoscale 2015, 7, 18708–18715.

    Article  CAS  Google Scholar 

  102. Rajapakse, M.; Musa, R.; Abu, U. O.; Karki, B.; Yu, M.; Sumanasekera, G.; Jasinski, J. B. Electrochemical Li intercalation in black phosphorus: In situ and ex situ studies. J. Phys. Chem. C 2020, 124, 10710–10718.

    Article  CAS  Google Scholar 

  103. Shojaei, F.; Kang, H. S. Electronic structure and carrier mobility of two-dimensional α arsenic phosphide. J. Phys. Chem. C 2015, 119, 20210–20216.

    Article  CAS  Google Scholar 

  104. Argyris, A.; Syvridis, D.; Larger, L.; Annovazzi-Lodi, V.; Colet, P.; Fischer, I.; García-Ojalvo, J.; Mirasso, C. R.; Pesquera, L.; Shore, K. A. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature 2005, 438, 343–346.

    Article  CAS  Google Scholar 

  105. Tang, Y. F.; Zhan, W. D.; Hao, Z. Q.; Li, R. 10 wireless laser transmission technology for biomedical image information transmission. J. Invest. Med. 2019, 67, A3–A4.

    Google Scholar 

  106. Lin, X. N.; Lu, Z. W.; Dai, W. L.; Liu, B. C.; Zhang, Y. X.; Li, J. Y.; Ye, J. S. Laser engraved nitrogen-doped graphene sensor for the simultaneous determination of Cd(II) and Pb(II). J. Electroanal. Chem. 2018, 828, 41–49.

    Article  CAS  Google Scholar 

  107. Penilla, E. H.; Devia-Cruz, L. F.; Wieg, A. T.; Martinez-Torres, P.; Cuando-Espitia, N.; Sellappan, P.; Kodera, Y.; Aguilar, G.; Garay, J. E. Ultrafast laser welding of ceramics. Science 2019, 365, 803–808.

    Article  CAS  Google Scholar 

  108. Mears, R. J.; Reekie, L.; Jauncey, I. M.; Payne, D. N. Low-noise erbium-doped fibre amplifier operating at 1.54 µm. Electron. Lett. 1987, 23, 1026–1028.

    Article  Google Scholar 

  109. Desurvire, E.; Simpson, J. R.; Becker, P. C. High-gain erbium-doped traveling-wave fiber amplifier. Opt. Lett. 1987, 12, 888–890.

    Article  CAS  Google Scholar 

  110. Sobon, G.; Sotor, J.; Pasternak, I.; Krajewska, A.; Strupinski, W.; Abramski, K. M. Multilayer graphene-based saturable absorbers with scalable modulation depth for mode-locked Er- and Tm-doped fiber lasers. Opt. Mater. Express 2015, 5, 2884–2894.

    Article  CAS  Google Scholar 

  111. Chen, B. H.; Zhang, X. Y.; Wu, K.; Wang, H.; Wang, J.; Chen, J. P. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723–26737.

    Article  CAS  Google Scholar 

  112. Mu, H. R.; Wang, Z. T.; Yuan, J.; Xiao, S.; Chen, C. Y.; Chen, Y.; Song, J. C.; Wang, Y. S.; Xue, Y. Z.; Bao, Q. L. et al. Graphene-Bi2Te3 heterostructure as saturable absorber for short pulse generation. ACS Photonics 2015, 2, 832–841.

    Article  CAS  Google Scholar 

  113. Liu, J. S.; Li, X. H.; Guo, Y. X.; Qyyum, A.; Shi, Z. J.; Feng, T. C.; Zhang, Y.; Jiang, C. X.; Liu, X. F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small 2019, 15, 1902811.

    Article  Google Scholar 

  114. Chu, Z. Z.; Liu, J.; Guo, Z. N.; Zhang, H. 2 µm passively Q-switched laser based on black phosphorus. Opt. Mater. Express 2016, 6, 2374–2379.

    Article  CAS  Google Scholar 

  115. Jin, H. C.; Xin, S.; Chuang, C. H.; Li, W. D.; Wang, H. Y.; Zhu, J.; Xie, H. Y.; Zhang, T. M.; Wan, Y. Y.; Qi, Z. K. et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197.

    Article  CAS  Google Scholar 

  116. Li, B.; Zhang, D.; Liu, Y.; Yu, Y. X.; Li, S. M.; Yang, S. B. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy 2017, 39, 654–661.

    Article  CAS  Google Scholar 

  117. Lin, D. C.; Liu, Y. Y.; Liang, Z.; Lee, H. W.; Sun, J.; Wang, H. T.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626–632.

    Article  CAS  Google Scholar 

  118. Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 2018, 13, 337–344.

    Article  CAS  Google Scholar 

  119. Yan, K.; Lee, H. W.; Gao, T.; Zheng, G. Y.; Yao, H. B.; Wang, H. T.; Lu, Z. D.; Zhou, Y.; Liang, Z.; Liu, Z. F. et al. Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett. 2014, 14, 6016–6022.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFA0208200), the Fundamental Research Funds for the Central Universities of China (No. 0205-14380266), the National Natural Science Foundation of China (Nos. 22022505, 21872069, and 22109069), the Natural Science Foundation of Jiangsu Province (No. BK20180008), the Doctoral Innovation and Entrepreneurship Program of Jiangsu Province (No. JSSCBS20210045), and the Shenzhen Fundamental Research Program of Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180307155007589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Hu, Y., Zhang, K. et al. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 15, 3737–3752 (2022). https://doi.org/10.1007/s12274-021-3974-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3974-y

Keywords

Navigation