Skip to main content
Log in

Effects of physical and chemical ageing on 3D printed poly (ether ether ketone)/poly (ether imide) [PEEK/PEI] blend for aerospace applications

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

During service in outdoor environments, or in some application fields, 3D printed polymer-based materials are exposed to various environmental conditions such as moisture, heat, and chemical solvents that may cause significant degradation in properties. The durability of 3D printed high-performance polymer materials under environmental conditions has become an ongoing concern for the industry and researchers due to their increasing use. This study aims to evaluate the effects of physical and chemical aging on the properties of a 3D printed blend of PEEK/PEI. The structural, morphological and mechanical properties of as-printed and aged samples were studied by multiple methods, including FTIR, SEM and tensile tests. Thermal properties of samples were also evaluated through TGA, DSC and DMA analysis. Except for a slight decrease in elastic properties, the PEEK/PEI blend does not exhibit significant changes in tensile strength, degree of crystallinity and thermal properties after 1000 h of physical and chemical aging. The PEEK/PEI blend remained stable after aging under severe conditions similar to those found in a reactor nacelle, conditions to which parts produced by additive manufacturing could be subjected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. De Leon AC, Chen Q, Palaganas NB et al (2016) High performance polymer nanocomposites for additive manufacturing applications. React Funct Polym 103:141–155

    Article  Google Scholar 

  2. Vanaei S, Parizi MS, Vanaei S et al (2021) An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regen 2:1–18. https://doi.org/10.1016/j.engreg.2020.12.001

    Article  Google Scholar 

  3. Holycross DR, Chai M (2013) Comprehensive NMR studies of the structures and properties of PEI polymers. Macromolecules 46:6891–6897. https://doi.org/10.1021/ma4011796

    Article  CAS  Google Scholar 

  4. Abate L, Blanco I, Orestano A et al (2005) Kinetics of the isothermal degradation of model polymers containing ether, ketone and sulfone groups. Polym Degrad Stab 87:271–278. https://doi.org/10.1016/j.polymdegradstab.2004.06.011

    Article  CAS  Google Scholar 

  5. Mittal V (2011) High Performance Polymers and Engineering Plastics

  6. El Magri A, Vanaei S, Vaudreuil S (2021) An overview on the influence of process parameters through the characteristic of 3D-printed PEEK and PEI parts. High Perform Polym. https://doi.org/10.1177/09540083211009961

  7. Rinaldi M, Ghidini T, Cecchini F et al (2018) Additive layer manufacturing of poly (ether ether ketone) via FDM. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2018.03.029

    Article  Google Scholar 

  8. El Magri A, El Mabrouk K, Vaudreuil S et al (2020) Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts. J Appl Polym Sci. https://doi.org/10.1002/app.49087

  9. Zalaznik M, Kalin M, Novak S (2016) Influence of the processing temperature on the tribological and mechanical properties of poly-ether-ether-ketone (PEEK) polymer. Tribol Int 94:92–97. https://doi.org/10.1016/j.triboint.2015.08.016

    Article  CAS  Google Scholar 

  10. Shen LQ, Xu ZK, Liu ZM, Xu YY (2003) Ultrafiltration hollow fiber membranes from poly(ether imide): preparation, morphologies and properties. J Membr Sci 223(1–2):105–118

    Google Scholar 

  11. Shibata.M, Fang.Z Y. (2001) Miscibility and crystallization behavior of poly(ether ether ketone)/poly(ether imide) blends. Appl Polym Sci 80:769–775

    Article  Google Scholar 

  12. Crevecoeur G, Groeninckx G (1991) Binary blends of poly(ether ether ketone) and poly(ether imide). Miscibility, crystallization behavior, and semicrystalline morphology. Macromolecules 24:1190–1195. https://doi.org/10.1021/ma00005a034

    Article  CAS  Google Scholar 

  13. Forés-Garriga A, Pérez MA, Gómez-Gras G, Reyes-Pozo G (2020) Role of infill parameters on the mechanical performance and weight reduction of PEI Ultem processed by FFF. Mater Des 193:108810. https://doi.org/10.1016/j.matdes.2020.108810

    Article  Google Scholar 

  14. Kong X, Teng F, Tang H et al (1996) Miscibility and crystallization behaviour of poly(ether ether ketone)/polyimide blends. Polymer (Guildf) 37:1751–1755. https://doi.org/10.1016/0032-3861(96)83729-3

    Article  CAS  Google Scholar 

  15. Hudson SD, Davis DD, Lovinger AJ (1992) Semicrystalline morphology of poly(aryl ether ether ketone)/poly(ether imide) blends. Macromolecules 25:1759–1765

    Article  CAS  Google Scholar 

  16. Arzak A, Eguiazábal JI, Nazábal J (2006) Mechanical performance of directly injection-molded PEEK/PEI blends at room and high temperature. 36:233–246. https://doi.org/10.1080/00222349708220428

  17. Chen J, Guo Q, Zhao Z, et al (2012) Structures and mechanical properties of PEEK/PEI/PES plastics alloys blent by extrusion molding used for cable insulating jacketing. In: Procedia Engineering. Elsevier Ltd, pp 96–104

  18. Askanian H, Muranaka de Lima D, Commereuc S, Verney V (2018) Toward a better understanding of the fused deposition modeling process: comparison with injection molding. 3D Print Addit Manuf 3dp.2017.0060. https://doi.org/10.1089/3dp.2017.0060

  19. Cicala G, Ognibene G, Portuesi S et al (2018) Comparison of ultem 9085 used in fused deposition modelling (FDM) with polytherimide blends. Materials (Basel) 11:285. https://doi.org/10.3390/ma11020285

    Article  CAS  Google Scholar 

  20. Vanaei HR, Raissi K, Deligant M et al (2020) Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. J Mater Sci. https://doi.org/10.1007/s10853-020-05057-9

    Article  Google Scholar 

  21. Vanaei H, Shirinbayan M, Deligant M et al (2020) Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication. Polym Eng Sci. https://doi.org/10.1002/pen.25419

    Article  Google Scholar 

  22. Vaezi M, Yang S (2015) Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys Prototyp 10:123–135. https://doi.org/10.1080/17452759.2015.1097053

    Article  Google Scholar 

  23. Yang C, Tian X, Li D et al (2017) Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J Mater Process Technol 248:1–7. https://doi.org/10.1016/j.jmatprotec.2017.04.027

    Article  CAS  Google Scholar 

  24. Ding S, Zou B, Wang P, Ding H (2019) Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM. Polym Test. https://doi.org/10.1016/j.polymertesting.2019.105948

    Article  Google Scholar 

  25. El Magri A, El Mabrouk K (2021) Vaudreuil S (2021) Preparation and characterization of poly(ether ether ketone)/poly(ether imide) [PEEK/PEI] blends for fused filament fabrication. J Mater Sci 5625(56):14348–14367. https://doi.org/10.1007/S10853-021-06172-X

    Article  Google Scholar 

  26. Perng L-H (2000) Thermal decomposition characteristics of poly(ether imide) by TG/MS. Polym Res 7(3):185–193

    Article  CAS  Google Scholar 

  27. Ramani R, Alam S (2010) Composition optimization of PEEK/PEI blend using model-free kinetics analysis. Thermochim Acta 511:179–188. https://doi.org/10.1016/j.tca.2010.08.012

    Article  CAS  Google Scholar 

  28. Perng LH, Tsai CJLY (1999) Mechanism and kinetic modelling of PEEK pyrolysis by TG/MS. Polymer Polymer (Guildf) 40:7321–7329. https://doi.org/10.1016/S0032-3861(99)00006-3

    Article  CAS  Google Scholar 

  29. Perng LH (1999) Thermal cracking characteristics of PEEK under different environments by the TG/FTIR technique. J Polym Sci Part A Polym Chem 37:4582–4590. https://doi.org/10.1002/(SICI)1099-0518(19991215)37:24%3c4582::AID-POLA15%3e3.0.CO;2-Q

    Article  CAS  Google Scholar 

  30. Diez-Pascual AM, Martínez G, Gómez MA (2009) Synthesis and characterization of poly(ether ether ketone) derivatives obtained by carbonyl reduction. Macromolecules. https://doi.org/10.1021/ma901208e

    Article  Google Scholar 

  31. Nguyen HX, Ishida H (1986) Molecular analysis of the melting behaviour of poly(aryl ether ether ketone. Polymer (Guildf) 27:1400–1405. https://doi.org/10.1016/0032-3861(86)90041-8

    Article  CAS  Google Scholar 

  32. Yasin S, Shakeel A, Ahmad M et al (2019) Physico-chemical analysis of semi-crystalline PEEK in aliphatic and aromatic solvents. Soft Mater. https://doi.org/10.1080/1539445X.2019.1572622

    Article  Google Scholar 

  33. Chen BK, Su CT, Tseng MC, Tsay SY (2006) Preparation of polyetherimide nanocomposites with improved thermal, mechanical and dielectric properties. Polym Bull 57:671–681. https://doi.org/10.1007/s00289-006-0630-3

    Article  CAS  Google Scholar 

  34. Farong H, Xueqiu W, Shijin L (1987) The thermal stability of polyetherimide. Polym Degrad Stab 18:247–259. https://doi.org/10.1016/0141-3910(87)90005-X

    Article  Google Scholar 

  35. Díez-Pascual AM, Díez-Vicente AL (2015) Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications. ACS Appl Mater Interfaces 7:5561–5573. https://doi.org/10.1021/acsami.5b00210

    Article  CAS  Google Scholar 

  36. Rajeesh KR, Gnanamoorthy R, Velmurugan R (2010) The effect of moisture content on the tensile behaviour of polyamide 6. Nanocomposites 224:173–176. https://doi.org/10.1243/14644207JMDA316

  37. Srivastava VK (1999) Influence of water immersion on mechanical properties of quasi-isotropic glass fibre reinforced epoxy vinylester resin composites. Mater Sci Eng A 263:56–63. https://doi.org/10.1016/S0921-5093(98)01037-5

    Article  Google Scholar 

  38. Song Y, Deng J, Xu Z, et al (2021) Effect of Thermal Aging on Mechanical Properties and Color Difference of Glass Fiber/Polyetherimide (GF/PEI) Composites. Polym 2022, 14:67. https://doi.org/10.3390/POLYM14010067

  39. Zhong Y, Cheng M, Zhang X et al (2019) Hygrothermal durability of glass and carbon fiber reinforced composites—a comparative study. Compos Struct 211:134–143. https://doi.org/10.1016/J.COMPSTRUCT.2018.12.034

    Article  Google Scholar 

  40. Karsli NG, Demirkol S, Yilmaz T (2016) Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Compos Part B Eng 88:253–263. https://doi.org/10.1016/j.compositesb.2015.11.013

    Article  CAS  Google Scholar 

  41. Gardea F, Lagoudas DC, Naraghi M (2016) An experimental study into active damping mechanisms in CNT nanocomposite

Download references

Acknowledgements

The authors gratefully acknowledge the support from the Euromed University of Fes, and the financial contribution of the Hassan II Academy of Sciences and Technology and Safran Composites (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anouar El Magri.

Ethics declarations

Conflict of interest

The authors certify that they have NO affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Handling Editor: Mohammad Naraghi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Magri, A., Vaudreuil, S. Effects of physical and chemical ageing on 3D printed poly (ether ether ketone)/poly (ether imide) [PEEK/PEI] blend for aerospace applications. J Mater Sci 58, 1465–1479 (2023). https://doi.org/10.1007/s10853-022-08068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-08068-w

Navigation