Skip to main content

Advertisement

Log in

Cooling with cork: envisaging its giant compressive mechanocaloric effect for solid-state cooling devices

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The urgent need for reducing greenhouse gasses leads to the search for better alternatives that do not compromise the environment. Traditional refrigeration devices, for example, use harmful gasses as refrigerants and consume a lot of energy worldwide. Solid-state cooling devices based on mechanocaloric effects can be a better alternative that uses sustainable and eco-friendly materials with the potential to be more energy-efficient. Here, we study the compressive mechanocaloric effect in agglomerated cork: a natural, renewable, and sustainable material that has been used for centuries. We report giant values of entropy and temperature changes around room temperature, which peaks at the phase transition of suberin, a major component of cork. The results are promising and compete with the best mechanocaloric materials in the literature reported so far.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Benhadid-Dib S, Benzaoui A (2012) Refrigerants and their environmental impact substitution of hydro chlorofluorocarbon HCFC and HFC hydro fluorocarbon. search for an adequate refrigerant. Energy Procedia 18:807–816. https://doi.org/10.1016/j.egypro.2012.05.096

    Article  CAS  Google Scholar 

  2. Francis C, Maidment G, Davies G (2017) An investigation of refrigerant leakage in commercial refrigeration. Int J Refrig 74:12–21. https://doi.org/10.1016/j.ijrefrig.2016.10.009

    Article  CAS  Google Scholar 

  3. Sun J, Im P, Bae Y et al (2021) Dataset of low global warming potential refrigerant refrigeration system for fault detection and diagnostics. Sci Data 8:144. https://doi.org/10.1038/s41597-021-00927-6

    Article  Google Scholar 

  4. Cazorla C (2019) Novel mechanocaloric materials for solid-state cooling applications. Appl Phys Rev 6:041316. https://doi.org/10.1063/1.5113620

    Article  CAS  Google Scholar 

  5. Bocca JR, Favaro SL, Alves CS et al (2021) Giant barocaloric effect in commercial polyurethane. Polym Test 100:107251. https://doi.org/10.1016/j.polymertesting.2021.107251

    Article  CAS  Google Scholar 

  6. Imamura W, Usuda ÉO, Paixão LS et al (2020) Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: great potential for solid-state cooling. Chinese J Polym Sci 38:999–1005. https://doi.org/10.1007/s10118-020-2423-9

    Article  CAS  Google Scholar 

  7. Carvalho AMG, Imamura W, Usuda EO, Bom NM (2018) Giant room-temperature barocaloric effects in PDMS rubber at low pressures. Eur Polym J 99:212–221. https://doi.org/10.1016/j.eurpolymj.2017.12.007

    Article  CAS  Google Scholar 

  8. Usuda EO, Bom NM, Carvalho AMG (2017) Large barocaloric effects at low pressures in natural rubber. Eur Polym J 92:287–293. https://doi.org/10.1016/j.eurpolymj.2017.05.017

    Article  CAS  Google Scholar 

  9. Bom NM, Usuda ÉO, da Silva GM et al (2020) waste tire rubber-based refrigerants for solid-state cooling devices. Chinese J Polym Sci 38:769–775. https://doi.org/10.1007/s10118-020-2385-y

    Article  CAS  Google Scholar 

  10. Bom NM, Imamura W, Usuda EO et al (2018) Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling. ACS Macro Lett 7:31–36. https://doi.org/10.1021/acsmacrolett.7b00744

    Article  CAS  Google Scholar 

  11. Usuda EO, Imamura W, Bom NM et al (2019) giant reversible barocaloric effects in nitrile butadiene rubber around room temperature. ACS Appl Polym Mater 1:1991–1997. https://doi.org/10.1021/acsapm.9b00235

    Article  CAS  Google Scholar 

  12. Wang R, Zhou X, Wang W, Liu Z (2021) Twist-based cooling of polyvinylidene difluoride for mechanothermochromic fibers. Chem Eng J 417:128060. https://doi.org/10.1016/j.cej.2020.128060

    Article  CAS  Google Scholar 

  13. Imamura W, Usuda EO, Lopes ÉSN, Carvalho AMG (2022) Giant barocaloric effects in natural graphite/polydimethylsiloxane rubber composites. J Mater Sci. https://doi.org/10.1007/s10853-021-06649-9

    Article  Google Scholar 

  14. Wu RR, Bao LF, Hu FX et al (2015) Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci Rep 5:18027. https://doi.org/10.1038/srep18027

    Article  CAS  Google Scholar 

  15. Samanta T, Lloveras P, Saleheen AU et al (2018) Barocaloric and magnetocaloric effects in (MnNiSi)1–x(FeCoGe)x. Appl Phys Lett 112:021907

    Article  Google Scholar 

  16. Yuce S, Barrio M, Emre B et al (2012) Barocaloric effect in the magnetocaloric prototype Gd5Si2Ge2. Appl Phys Lett 101:071906. https://doi.org/10.1063/1.4745920

    Article  CAS  Google Scholar 

  17. Mañosa L, González-Alonso D, Planes A et al (2011) Inverse barocaloric effect in the giant magnetocaloric La–Fe–Si–Co compound. Nat Commun 2:595. https://doi.org/10.1038/ncomms1606

    Article  CAS  Google Scholar 

  18. Stern-Taulats E, Planes A, Lloveras P et al (2014) Barocaloric and magnetocaloric effects in Fe49Rh51. Phys Rev B - Condens Matter Mater Phys 89:1–8. https://doi.org/10.1103/PhysRevB.89.214105

    Article  CAS  Google Scholar 

  19. Matsunami D, Fujita A, Takenaka K, Kano M (2015) Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn 3 GaN. Nat Mater 14:73–78. https://doi.org/10.1038/nmat4117

    Article  CAS  Google Scholar 

  20. Stern-Taulats E, Lloveras P, Barrio M et al (2016) Inverse barocaloric effects in ferroelectric BaTiO3 ceramics. APL Mater 4:091102. https://doi.org/10.1063/1.4961598

    Article  CAS  Google Scholar 

  21. Gorev MV, Mikhaleva EA, Flerov IN, Bogdanov EV (2019) Conventional and inverse barocaloric effects in ferroelectric NH4HSO4. J Alloys Compd 806:1047–1051. https://doi.org/10.1016/j.jallcom.2019.07.273

    Article  CAS  Google Scholar 

  22. Mikhaleva EA, Flerov IN, Gorev MV et al (2020) Features of the behavior of the barocaloric effect near ferroelectric phase transition close to the tricritical point. Curr Comput-Aided Drug Des. https://doi.org/10.3390/cryst10010051

    Article  Google Scholar 

  23. Lloveras P, Stern-Taulats E, Barrio M et al (2015) Giant barocaloric effects at low pressure in ferrielectric ammonium sulphate. Nat Commun 6:8801. https://doi.org/10.1038/ncomms9801

    Article  CAS  Google Scholar 

  24. Flerov IN, Gorev MV, Tressaud A, Laptash NM (2011) Perovskite-like fluorides and oxyfluorides: Phase transitions and caloric effects. Crystallogr Reports 56:9–17. https://doi.org/10.1134/S106377451101010X

    Article  CAS  Google Scholar 

  25. Gorev MV, Bogdanov EV, Flerov IN et al (2010) Investigation of thermal expansion, phase diagrams, and barocaloric effect in the (NH4)2WO2F4 and (NH4)2MoO2F4 oxyfluorides. Phys Solid State 52:167–175. https://doi.org/10.1134/S1063783410010294

    Article  CAS  Google Scholar 

  26. Flerov IN, Gorev MV, Bogdanov EV, Laptash NM (2016) Barocaloric effect in ferroelastic fluorides and oxyfluorides. Ferroelectrics 500:153–163. https://doi.org/10.1080/00150193.2016.1214525

    Article  CAS  Google Scholar 

  27. Aznar A, Lloveras P, Romanini M et al (2017) Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nat Commun 8:1851. https://doi.org/10.1038/s41467-017-01898-2

    Article  CAS  Google Scholar 

  28. Sagotra AK, Chu D, Cazorla C (2018) Room-temperature mechanocaloric effects in lithium-based superionic materials. Nat Commun 9:3337. https://doi.org/10.1038/s41467-018-05835-9

    Article  CAS  Google Scholar 

  29. Bermúdez-García JM, Sánchez-Andújar M, Castro-García S et al (2017) Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat Commun 8:15715–15722. https://doi.org/10.1038/ncomms15715

    Article  CAS  Google Scholar 

  30. Bermúdez-García JM, Sánchez-Andújar M, Señarís-Rodríguez MA (2017) A new playground for organic-inorganic hybrids: barocaloric materials for pressure-induced solid-state cooling. J Phys Chem Lett 8:4419–4423. https://doi.org/10.1021/acs.jpclett.7b01845

    Article  CAS  Google Scholar 

  31. Bermúdez-García JM, Yáñez-Vilar S, García-Fernández A et al (2018) Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. J Mater Chem C 6:9867–9874. https://doi.org/10.1039/c7tc03136j

    Article  CAS  Google Scholar 

  32. Reis MS (2020) Magnetocaloric and barocaloric effects of metal complexes for solid state cooling: Review, trends and perspectives. Coord Chem Rev 417:213357. https://doi.org/10.1016/j.ccr.2020.213357

    Article  CAS  Google Scholar 

  33. Li B, Kawakita Y, Ohira-Kawamura S et al (2019) Colossal barocaloric effects in plastic crystals. Nature 567:506–510. https://doi.org/10.1038/s41586-019-1042-5

    Article  CAS  Google Scholar 

  34. Li FB, Li M, Xu X et al (2020) Understanding colossal barocaloric effects in plastic crystals. Nat Commun 11:1–8. https://doi.org/10.1038/s41467-020-18043-1

    Article  Google Scholar 

  35. Lloveras P, Aznar A, Barrio M et al (2019) Colossal barocaloric effects near room temperature in plastic crystals of neopentylglycol. Nat Commun 10:1803. https://doi.org/10.1038/s41467-019-09730-9

    Article  CAS  Google Scholar 

  36. Aznar A, Lloveras P, Barrio M et al (2020) Reversible and irreversible colossal barocaloric effects in plastic crystals. J Mater Chem A 8:639–647. https://doi.org/10.1039/c9ta10947a

    Article  CAS  Google Scholar 

  37. Duarte AP, Bordado JC (2015) Cork-a renewable raw material: forecast of industrial potential and development priorities. Front Mater 2:1–8. https://doi.org/10.3389/fmats.2015.00002

    Article  Google Scholar 

  38. Silva SP, Sabino MA, Fernandes EM et al (2005) Cork: properties, capabilities and applications. Int Mater Rev 50:345–365. https://doi.org/10.1179/174328005X41168

    Article  CAS  Google Scholar 

  39. Bom NM, Usuda EO, Guimarães GM et al (2017) Note: experimental setup for measuring the barocaloric effect in polymers: application to natural rubber. Rev Sci Instrum 88:046103–046105. https://doi.org/10.1063/1.4979464

    Article  CAS  Google Scholar 

  40. Fortes MA, Teresa Nogueira M (1989) The poison effect in cork. Mater Sci Eng A 122:227–232. https://doi.org/10.1016/0921-5093(89)90634-5

    Article  Google Scholar 

  41. Paixão LS, Usuda EO, Imamura W, Carvalho AMG (2021) High-field specific heat and entropy obtained from adiabatic temperature change. Eur Phys J Plus 136:545. https://doi.org/10.1140/epjp/s13360-021-01538-1

    Article  Google Scholar 

  42. Sousa AF, Gandini A, Caetano A et al (2016) Unravelling the distinct crystallinity and thermal properties of suberin compounds from quercus suber and betula pendula outer barks. Int J Biol Macromol 93:686–694. https://doi.org/10.1016/j.ijbiomac.2016.09.031

    Article  CAS  Google Scholar 

  43. Graça J, Santos S (2007) Suberin: a biopolyester of plants’ skin. Macromol Biosci 7:128–135. https://doi.org/10.1002/mabi.200600218

    Article  CAS  Google Scholar 

  44. Pereira H (2007) Cork: biology, production and uses, 1st edn. Elsevier, Elsevier, Amsterdam

    Google Scholar 

  45. Crouvisier-Urion K, Bellat J-P, Gougeon RD, Karbowiak T (2018) Mechanical properties of agglomerated cork stoppers for sparkling wines: Influence of adhesive and cork particle size. Compos Struct 203:789–796. https://doi.org/10.1016/j.compstruct.2018.06.116

    Article  Google Scholar 

  46. Miliante CM, Christmann AM, Usuda EO et al (2020) Unveiling the origin of the giant barocaloric effect in natural rubber. Macromolecules 53:2606–2615. https://doi.org/10.1021/acs.macromol.0c00051

    Article  CAS  Google Scholar 

  47. Boldrin D (2021) Fantastic barocalorics and where to find them. Appl Phys Lett 118:170502. https://doi.org/10.1063/5.0046416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from CNPq (INCT-RT—National Institutes of Science and Technology—Refrigeration and Thermophysics through grant CNPq 404023/2019-3), UNIFESP and UEM. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Funding

This study was funded by CNPq (Grant Number 309324/2019–0).

Author information

Authors and Affiliations

Authors

Contributions

EOU contributed to writing—original draft, data curation, and formal analysis. JRB contributed to methodology, investigation, and formal analysis. LSP contributed to formal analysis. FCC contributed to investigation. ER contributed to investigation. GF contributed to investigation. AMGC contributed to supervision, conceptualization, and methodology. CSA contributed to supervision, conceptualization, and methodology. SLF contributed to project administration, supervision, conceptualization, methodology, and resources. All authors contributed to writing—review and editing.

Corresponding author

Correspondence to Silvia Luciana Fávaro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Stephen Eichhorn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5388 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usuda, E.O., Bocca, J.R., Paixão, L.S. et al. Cooling with cork: envisaging its giant compressive mechanocaloric effect for solid-state cooling devices. J Mater Sci 57, 17700–17710 (2022). https://doi.org/10.1007/s10853-022-07749-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07749-w

Navigation