Skip to main content

Advertisement

Log in

Waste Tire Rubber-based Refrigerants for Solid-state Cooling Devices

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Management of discarded tires is a compelling environmental issue worldwide. Although there are several approaches developed to recycle waste tire rubbers, their application in solid-state cooling is still unexplored. Considering the high barocaloric potential verified for elastomers, the use of waste tire rubber (WTR) as a refrigerant in solid-state cooling devices is very promising. Herein, we investigated the barocaloric effects in WTR and polymer blends made of vulcanized natural rubber (VNR) and WTR, to evaluate its feasibility for solid-state cooling technologies. The adiabatic temperature changes and the isothermal entropy changes reach giant values, as well as the performance parameters, being comparable or even better than most barocaloric materials in literature. Moreover, pure WTR and WTR-based samples also present a faster thermal exchange than VNR, consisting of an additional advantage of using these discarded materials. Thus, the present findings evidence the encouraging perspectives of employing waste rubbers in solid-state cooling based on barocaloric effects, contributing to both the recycling of polymers and the sustainable energy technology field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boucher, J.; Friot, D. Primary microplastics in the oceans: a global evaluation of sources. IUCN, Gland, Switzerland, 2017.

    Book  Google Scholar 

  2. Siddique, R.; Naik, T. R. Properties of concrete ontaining scrap-tire rubber-an overview. Waste Manag.2004, 24, 563–569.

    Article  CAS  PubMed  Google Scholar 

  3. Thomas, B. S.; Gupta, R. C.; Kalla, P.; Cseteneyi, L. Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates. Constr. Build. Mater.2014, 59, 204–212.

    Article  Google Scholar 

  4. Ramarad, S.; Khalid, M.; Ratnam, C. T.; Chuah, A. L.; Rashmi, W. Waste tire rubber in polymer blends: a review on the evolution, properties and future. Prog. Mater. Sci.2015, 72, 100–140.

    Article  CAS  Google Scholar 

  5. Rodgers, B.; Waddell, W. Tire engineering. In The science and technology of rubber. Elsevier Academic Press, 2013, p. 619–661.

    Google Scholar 

  6. Isayev, A. I. Recycling of rubbers. In The science and technology of rubber. Elsevier Academic Press, 2013, p. 697–764.

    Chapter  Google Scholar 

  7. Imbernon, L.; Norvez, S. From landfilling to vitrimer chemistry in rubber life cycle. Eur. Polym. J.2016, 82, 347–376.

    Article  CAS  Google Scholar 

  8. European Comission. Environment: waste. http://ec.europa.eu/environment/waste/.

  9. European Comission. Landfill of waste directive (Council directive 1999/31/EC), 1999. https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A31999L0031.

    Google Scholar 

  10. Miranda, M.; Pinto, F.; Gulyurtlu, I.; Cabrita, I. Pyrolysis of rubber tyre wastes: a kinetic study. Fuel2013, 103, 542–552.

    Article  CAS  Google Scholar 

  11. Dubkov, K. A.; Semikolenov, S. V.; Ivanov, D. P.; Babushkin, D. E.; Panov, G. I.; Parmon, V. N. Reclamation of waste tyre rubber with nitrous oxide. Polym. Degrad. Stab.2012, 97, 1123–1130.

    Article  CAS  Google Scholar 

  12. Fukumori, K.; Matusushita, M.; Okamoto, H.; Sato, N.; Suzuki, Y.; Takeuchi, K. Recycling technology of tire rubber. JSAE Rev.2002, 23, 259–264.

    Article  CAS  Google Scholar 

  13. Ferrão, P.; Ribeiro, P.; Silva, P. A management system for end-oflife tyres: a Portuguese case study. Waste Manag.2008, 28, 604–614.

    Article  PubMed  Google Scholar 

  14. Adhikari, B.; De, D.; Maiti, S. Reclamation and recycling of waste rubber. Prog. Polym. Sci.2000, 25, 909–948.

    Article  CAS  Google Scholar 

  15. Myhre, M.; Saiwari, S.; Dierkes, W.; Noordermeer, J. Rubber recycling: chemistry, processing, and applications. Rubber Chem. Technol.2012, 85, 408–449.

    Article  CAS  Google Scholar 

  16. Goodyear, C. 1853, B.G. Pat., 2933.

  17. Sienkiewicz, M.; Janik, H.; Borzedowska-Labuda, K.; Kucinska-Lipka, J. Environmentally friendly polymer-rubber composites obtained from waste tyres: a review. J. Clean. Prod.2017, 147, 560–571.

    Article  CAS  Google Scholar 

  18. Chandran, V.; Manvel, R. T.; Lakshmanan, T.; Senthil, K. M. Evaluation of performance of natural rubber composites with different sizes of waste tyre rubber (WTR) and precipitated silica on C-M-M. Arab. J. Sci. Eng.2015, 40, 1187–1196.

    Article  CAS  Google Scholar 

  19. Crespo, J. E.; Nadal, A.; Parres, F. Research into the influence of ground tire rubber (GTR) in the mechanical and thermal properties of recycled thermoplastic materials. Materwiss. Werksttech.2010, 41, 293–299.

    Article  CAS  Google Scholar 

  20. Yehia, A. A.; Mull, M. A.; Ismail, M. N.; Hefny, Y. A.; Abdel-Bary, E. M. Effect of chemically modified waste rubber powder as a filler in natural rubber vulcanizates. J. Appl. Polym. Sci.2004, 93, 30–36.

    Article  CAS  Google Scholar 

  21. Magioli, M.; Sirqueira, A. S.; Soares, B. G. The effect of dynamic vulcanization on the mechanical, dynamic mechanical and fatigue properties of TPV based on polypropylene and ground tire rubber. Polym. Test.2010, 29, 840–848.

    Article  CAS  Google Scholar 

  22. Formela, K.; Ryl, J. Effect of slightly crosslinked butyl rubber and compatibilizer additms on properties of recycled polyethyleneground tire rubber blends. Przem. Chem.2013, 92, 444.

    CAS  Google Scholar 

  23. Zhang, X.; Zhu, X.; Liang, M.; Lu, C. Improvement of the properties of ground tire rubber (GTR)-filled nitrile vulcanizates through plasma surface modification of GTR powder. J. Appl. Polym. Sci.2009, 114, 1118–1125.

    Article  CAS  Google Scholar 

  24. Goetzler, W.; Zogg, R.; Young, J.; Johnson, C. Energy savings potential and RD&D oppportunities for non- vapor-compression HVAC technologies. 2014.

    Google Scholar 

  25. Fähler, S.; Pecharsky, V. K. Caloric effects in ferroic materials. MRS Bull.2018, 43, 264–268.

    Article  Google Scholar 

  26. Takeuchi, I.; Sandeman, K. Solid-state cooling with caloric materials. Phys. Today2015, 68, 48–54.

    Article  CAS  Google Scholar 

  27. Kitanovski, A.; Tomc, U.; Poredo, A. Present and future caloric refrigeration and heat-pump technologies. Int. J. Refrig.2015, 57, 288–298.

    Article  Google Scholar 

  28. Xie, Z.; Sebald, G.; Guyomar, D. Comparison of elastocaloric effect of natural rubber with other caloric effects on different-scale cooling application cases. Appl. Therm. Eng.2017, 111, 914–926.

    Article  Google Scholar 

  29. Lu, B.; Liu, J. Mechanocaloric materials for solid-state cooling. Sci. Bull.2015, 60, 1638.

    Article  Google Scholar 

  30. Usuda, E. O.; Bom, N. M.; Carvalho, A. M. G. Large barocaloric effects at low pressures in natural rubber. Eur. Polym. J.2017, 92, 287–293.

    Article  CAS  Google Scholar 

  31. Bom, N. M.; Imamura, W.; Usuda, E. O.; Paixão, L. S.; Carvalho, A. M. G. Giant barocaloric effects in natural rubber: a relevant step toward solid-state cooling. ACS Macro Lett.2018, 7, 31–36.

    Article  CAS  Google Scholar 

  32. Carvalho, A. M. G.; Imamura, W.; Usuda, E. O.; Bom, N. M. Giant room-temperature barocaloric effects in PDMS rubber at low pressures. Eur. Polym. J.2017, 99, 212–221.

    Article  CAS  Google Scholar 

  33. Imamura, W.; Usuda, E. O.; Paixão, L. S.; Bom, N. M.; Carvalho, A. M. G. Super-giant barocaloric effects in acetoxy silicone rubber around room temperature. 2017, arXiv:1710.01761.

    Google Scholar 

  34. Bom, N. M.; Usuda, E. O.; Guimarães, G. M.; Coelho, A. A.; Carvalho, A. M. G. Experimental setup for measuring the barocaloric effect in polymers: application to natural rubber. Rev. Sci. Instrum.2017, 88, 046103.

    Article  CAS  PubMed  Google Scholar 

  35. Wang, Z. F.; Yong, K.; Zhang, W.; Yi, C. Recycling waste tire rubber by water jet pulverization: powder characteristics and reinforcing performance in natural rubber composites. J. Polym. Eng.2018, 38, 51–62.

    Article  CAS  Google Scholar 

  36. Karabork, F.; Pehlivan, E.; Akdemir, A. Characterization of styrene butadiene rubber and microwave devulcanized ground tire rubber composites. J. Polym. Eng.2014, 34, 543–554.

    Article  CAS  Google Scholar 

  37. Zhang, X.; Lu, C.; Liang, M. Properties of natural rubber vulcanizates containing mechanochemically devulcanized ground tire rubber. J. Polym. Res.2009, 16, 411–419.

    Article  CAS  Google Scholar 

  38. Carvalho, A. M. G.; Araujo, D. H. C.; Canova, H. F.; Rodella, C. B.; Barret, D. H.; Cuffini, S. L.; Costa R. N.; Nunes, R. S. X-ray powder diffraction at the XRD1 beamline at LNLS X-ray powder diffraction at the XRD1 beamline at LNLS. J. Synchr. Radiat.2016, 23, 1501–1506.

    Article  CAS  Google Scholar 

  39. Carvalho, A. M. G.; Nunes, R. S.; Coelho, A. A. X-ray powder diffraction of high-absorption materials at the XRD1 beamline off the best conditions: application to (Gd, Nd)5Si4 compounds. Powder Diffr.2017, 32, 10–14.

    Article  CAS  Google Scholar 

  40. Board, C. I. W. M. Effects of waste tires, waste tire facilities, and waste tire projects on the environment, 1996. https://www2.calrecycle.ca.gov/Publications/Download/110.

    Google Scholar 

  41. Carvalho, A. M. G.; Salazar, Mejía C.; Ponte, C. A.; Silva, L. E. L.; Kaštil, J.; Kamarád, J.; Gomes A. M. Adiabatic temperature change from non-adiabatic measurements. Appl. Phys. A2016, 122, 246.

    Article  CAS  Google Scholar 

  42. Tishin, A. M. Magnetocaloric effect in lanthanide materials. J. Alloys Compd.1997, 250, 635–641.

    Article  CAS  Google Scholar 

  43. Imamura, W.; Paixão L. S.; Usuda E. O.; Bom, N. M.; Gama, S.; Lopes, E. S. N.; Carvalho, A. M. G. i-Caloric effects: a proposal for normalization. 2018; arXiv:1806.07959.

    Google Scholar 

  44. Matsunami, D.; Fujita, A.; Takenaka, K.; Kano, M. Giant barocaloric effect enhanced by the frustration of the antiferromagnetic phase in Mn3GaN. Nat. Mater.2015, 14, 73–78.

    Article  CAS  PubMed  Google Scholar 

  45. Mañosa, L.; González-Alonso, D.; Planes, A.; Barrio, M.; Tamarit, J. L.; Titov, I. S.; Acet, M.; Bhattacharyya, A.; Majumdar, S. Inverse barocaloric effect in the giant magnetocaloric La-Fe-Si-Co compound. Nat. Commun.2011, 2, 595.

    Article  PubMed  CAS  Google Scholar 

  46. Wu., R. R.; Bao L. F.; Hu, F. X.; Wu, H.; Huang, Q. Z.; Wang, J.; Dong, X. L.; Li, G. N.; Sun, J. R.; Shen, F. R.; Zhao, T. Y.; Zheng, X. Q.; Wang, L. C.; Liu, Y.; Zuo, W. L.; Zhao, Y. Y.; Zhang, M.; Wang, X. C.; Jin, C. Q.; Rao, G. H.; Han, X. F.; Shen, B. G. Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature. Sci. Rep.2015, 5, 18027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Samanta, T.; Lloveras, P.; Saleheen, A. U.; Lepkowski, D. L.; Kramer, E.; Dubenko, I.; Adams, P. W.; Young, D. P.; Barrio, M.; Tamarit, J. L.; Ali, N.; Stadler, S. Barocaloric and magnetocaloric effects in (MnNiSi)1–x(FeCoGe)x. Appl. Phys. Lett.2018, 112, 021907.

    Article  CAS  Google Scholar 

  48. Agari, Y.; Uno, T. Thermal conductivity of polymer filled with carbon materials: Effect of conductive particle chains on thermal conductivity. J. Appl. Polym. Sci.1985, 30, 2225–2235.

    Article  CAS  Google Scholar 

  49. Leong, C.; Chung, D. D. L. Carbon black dispersions as thermal pastes that surpass solder in providing high thermal contact conductance. Carbon2003, 41, 2459–2469.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from FAPESP (No. 2012/03480-0), CNPq and CAPES. The authors also thank LNLS and CNPEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolau Molina Bom.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bom, N.M., Usuda, É.O., da Silva Gigliotti, M. et al. Waste Tire Rubber-based Refrigerants for Solid-state Cooling Devices. Chin J Polym Sci 38, 769–775 (2020). https://doi.org/10.1007/s10118-020-2385-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2385-y

Keywords

Navigation