Skip to main content
Log in

A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For decades, a wide variety of products have benefitted from the use of flexible PVC, ranging from healthcare to cable to packaging & household items. The uniqueness of PVC rises from its growth as polymer from monomers and the final structure. Due to the presence of chlorine atoms, PVC is inherently flame retardant, but it cannot always meet all fire safety requirements and maintain a needed balance of properties. One approach to meet this balance of properties is to incorporate flame retardant functionality directly into the plasticizer that is added to PVC. However, the toxicity of current plasticizers has motivated a focus on bio-based plasticizers. In flexible PVC products where flame retardancy is necessary, reports have begun to appear involving bio-plasticizers where flame retardant functionality is included. This focused review presents current research in the flexible PVC field emphasizing development of bio-plasticizers and flame retardants, and an analysis of examples of bio-plasticizers, chemical structures, and effects on flame retardancy. The review concludes with a perspective on the main challenges and future research directions for this exciting fire research field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Li Y, Guo M, Li Y (2019) Recent advances in plasticized PVC gels for soft actuators and devices: a review. J Mater Chem C 7:12991–13009

    Article  CAS  Google Scholar 

  2. Tickner JA, Schettler T, Guidotti T, McCally M, Rossi M (2001) Health risks posed by use of Di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: a critical review. Am J Indust Med 31(1):100–111

    Article  Google Scholar 

  3. Sampson J, de Korte D (2011) DEHP-plasticised PVC: relevance to blood services. Transfus Med 21(2):73–83

    Article  CAS  Google Scholar 

  4. Larsson L, Sandgren P, Ohlsson S, Derving J, F-Christensen T, Daggert F, Frizi N, Reichenberg S, Chatellier S, Diedrich B, Antovic J, Larsson S, Uhlin M (2021) Non-phthalate plasticizer DEHT preserves adequate blood component quality during storage in PVC blood bags. Vox Sang 116(1):60–70

    Article  CAS  Google Scholar 

  5. Jamarani R, Halloran MW, Panchal K, Nicell JA, Leask RL, Maric M (2021) Poly(ε-caprolactone)-based additives: plasticization efficacy and migration resistance. J Vinyl Addit Technol 27(4):1–12

    Article  CAS  Google Scholar 

  6. Pan S, Hou D, Chang J, Xu Z, Wang S, Yan S, Zeng Q, Wang Z, Chen Y (2019) A potentially general approach to aliphatic ester-derived PVC plasticizers with suppressed migration as sustainable alternatives to DEHP. Green Chem 21:6430–6440

    Article  CAS  Google Scholar 

  7. Navarro R, Perrino MP, Tardajos MG, Reinecke H (2010) Phthalate plasticizers covalently bound to PVC: plasticization with suppressed migration. Macromolecules 43:2377–2381

    Article  CAS  Google Scholar 

  8. Navarro R, Perrino MP, Garcia C, Elvira C, Gallardo A, Reinecke H (2016) Highly flexible PVC materials without plasticizer migration as obtained by efficient one-pot procedure using trichlorotriazine chemistry. Macromolecules 49:2224–2227

    Article  CAS  Google Scholar 

  9. Sun Z, Mi X, Yu Y, Shi W, Feng A, Moad G, Thang SH (2021) All-PVC flexible poly (vinyl chloride): nonmigratory star-poly(vinyl chloride) as plasticizers for PVC by RAFT polymerization. Macromolecules 54:5022–5032

    Article  CAS  Google Scholar 

  10. Castro-Jiménez J, Berrojalbiz N, Pizarro M, Dachs J (2014) Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black seas atmosphere. Environ Sci Technol 48:3203–3209

    Article  CAS  Google Scholar 

  11. Castro-Jiménez J, G-Gaya B, Pizarro M, Casal P, P-Alvarez C, Dachs J (2016) Organophosphate ester flame retardants and plasticizers in the global oceanic atmosphere. Environ Sci Technol 50:12831–12839

    Article  CAS  Google Scholar 

  12. Su G, Letcher RJ, Yu H (2016) Organophosphate flame retardants and plasticizers in aqueous solution: pH-dependent hydrolysis, kinetics, and pathways. Environ Sci Technol 50:8103–8111

    Article  CAS  Google Scholar 

  13. Kim U-J, Kannan K (2018) occurrence and distribution of organophosphate flame retardants/plasticizers in surface waters, tap waters, and rainwater: implications for human exposure. Environ Sci Technol 52:5625–5633

    Article  CAS  Google Scholar 

  14. Been F, Bastiaensen M, Lai FY, Libousi K, Thomaidis NS, Banaglia L, Esseiva P, Delémont O, van Nuijs ALN, Covaci A (2018) Mining the chemical information on urban wastewater: monitoring human exposure to phosphorus flame retardants and plasticizers. Environ Sci Technol 52:6996–7005a

    Article  CAS  Google Scholar 

  15. Wang Y, Hou M, Zhang Q, Wu X, Zhao H, Xie Q, Chen J (2017) Organophosphorus flame retardants and plasticizers in building and decoration materials and their potential burdens in newly decorated houses in China. Environ Sci Technol 51:10991–10999

    Article  CAS  Google Scholar 

  16. Meng W, Wu W, Zhang W, Cheng L, Jiao Y, Qu H, Xu J (2019) Biotemplated facile synthesis of three-dimensional micro/nanoporous tin oxide: improving the flammable and mechanical properties of flexible PVC. Micro Nano Lett 14:828–830

    Article  CAS  Google Scholar 

  17. Bonsignore PV, Claassen PL (1980) Alumina trihydrate as a flame retardant filler for flexible vinyl compounds. J Vinyl Technol 2:114–118

    Article  CAS  Google Scholar 

  18. Moy PY (1998) FR characteristics of phosphate ester plasticizers with inorganic additives in PVC. J Vinyl Addit Technol 4:22–25

    Article  CAS  Google Scholar 

  19. Hobbs CE (2019) Recent advances in bio-based flame retardant additives for synthetic polymeric materials. Polymers 11:1–31

    Article  CAS  Google Scholar 

  20. Bocqué M, Lapinte V, Courault V, Couve J, Cassagnau P, Robin J-J (2018) Phosphonated lipids as primary plasticizers for PVC with improved flame retardancy. Eur J Lipid Sci 120(1800062):1–10

    Google Scholar 

  21. Pritchard G (2017) Global demand for plasticizers continues to rise. Addit Polym 10:10–11. https://doi.org/10.1016/S0306-3747(17)30137-9

    Article  Google Scholar 

  22. Marvel CS, Sample JH, Roy MF (1939) The structure of vinyl polymers. VI. Polyvinyl Halides. J AM Chem Soc 61:3241–3244

    Article  CAS  Google Scholar 

  23. Summers JW (1997) A review of vinyl technology. J Vinyl Addit Technol 3:130–139

    Article  CAS  Google Scholar 

  24. Starnes WH Jr (2005) Structural defects in poly(vinyl chloride). J Polym Sci Part A 43:2451–2467

    Article  CAS  Google Scholar 

  25. Starnes WH Jr (2012) How and to what extent are free radicals involved in the nonoxidative thermal dehydrochlorination of poly(vinyl chloride)? J Vinyl Addit Technol 18(2):71–75

    Article  CAS  Google Scholar 

  26. Cruz PPR, da Silva LC, Fiuza-Jr RA, Polli H (2021) Thermal dehydrochlorination of pure PVC polymer: part I-thermal degradation kinetics by thermogravimetric analysis. J Appl Polym Sci 138(25):50598

    Article  CAS  Google Scholar 

  27. Abreu CMR, Fonseca AC, Rodrigues DFSL, Rezende TC, Marques JRCC, Thomas AJC, Goncalves PMFO, Serra AC, Coelho JFJ (2022) Preparation of nonmigratory flexible poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl chloride) via aqueous reversible deactivation radical polymerization in a pilot reactor. React Funct Polym 2022(170):105138

    Article  CAS  Google Scholar 

  28. Griffin ER (2000) High-molecular-weight flexibilizers in low-smoke flame-retardant PVC compounds. J Vinyl Addit Technol 6:187

    Article  CAS  Google Scholar 

  29. Ramos-Devalle L, Gilbert M (1990) PVC/plasticizer compatibility: evaluation and its relation to processing. J Vinyl Addit Technol 12:222–225

    Article  CAS  Google Scholar 

  30. Godwin AD (2000) Plasticizers. In: Craver CD, Carraher CE Jr (eds) Applied polymer science: 21st Century. Elsevier, Amsterdam

    Google Scholar 

  31. Erythropel HC, Brown T, Maric M, Nicell JA, Cooper DG, Leask RL (2015) Designing greener plasticizers: effects of alkyl chain length and branching on the biodegradation of maleate based plasticizers. Chemospehere 134:106–112

    Article  CAS  Google Scholar 

  32. Yang Y, Huang J, Zhang R, Zhu J (2017) Designing bio-based plasticizers: effect of alkyl chain length on plasticization properties of isosorbide diesters in PVC blends. Mater Des 126:29–36

    Article  CAS  Google Scholar 

  33. Tan J, Liu B, Fu Q, Wang L, Xin J, Zhu X (2019) Role of the oxyethyl unit in the structure of vegetable oil-based plasticizer for PVC : an efficient strategy to enhance compatibility and plasticization. Polymers 11:779

    Article  CAS  Google Scholar 

  34. Tan J, Zhang S, Lu T, Li R, Zhong T, Zhu X (2019) Direct transformation of fatty acid-derived monomers from dimer acid manufacturing into valuable bio-plasticizers with high plasticization and compatibilization. J Cleaner Prod 229:1274

    Article  CAS  Google Scholar 

  35. Elsiwi BM, Garcia-Valdez O, Erythropel HC, Leask RL, Nicell JA, Maric M (2020) Fully renewable, effective, and highly biodegradable plasticizer: Di-n-heptyl succinate. ACS Sustain Chem Eng 8:12409–12418

    Article  CAS  Google Scholar 

  36. Halloran MW, Nicell JA, Leask RL, Maric M (2021) Small molecule plasticizers for improved migration resistance: investigation of branching and leaching behaviour in PVC blends. Materialstoday Commun. 29:102874

    CAS  Google Scholar 

  37. Zhu H, Yang J, Wu M, Wu Q, Liu J, Zhang J (2021) Biobased plasticizers from tartataric acid : synthesis and effect of alkyl chain length on the properties of poly(vinyl chloride). ACS Omega 6:13161–13169

    Article  CAS  Google Scholar 

  38. Kim J-K, Kang E, Huh KM (2019) Synthesis of a coconut oil-based bioplasticizer and its effects on the rheological and fusion properties of poly(vinyl chloride). Polymer (Korea) 43:778–786

    Article  CAS  Google Scholar 

  39. Arendt WD, Lang J (1998) New benzoate plasticizers for polyvinyl chloride: introduction and performance example. J Vinyl Addit Technol 4:184–188

    Article  CAS  Google Scholar 

  40. Arendt WD, McBride EL, Hanes RD (2014) New dibenzoate plasticizer blends for PVC applications. J Vinyl Addit Technol 20:137–142

    Article  CAS  Google Scholar 

  41. Tong H, Hai J (2018) Sustainable synthesis of bio-based hyperbranched ester and its application for preparing soft polyvinyl chloride materials. Polym Int 68:456–463

    Article  CAS  Google Scholar 

  42. Chen J, Nie X, Jiang J (2020) Synthesis of a novel bio-oil-based hyperbranched ester plasticizer and its effects on poly(vinyl chloride) soft films. ACS Omega 5:5480–5486

    Article  CAS  Google Scholar 

  43. Li Y, Eu E, Yang X, Wei Z (2020) Multiarm hyperbranched polyester-b-poly(-caprolactone): plasticization effect and migration resistance for PVC. J Vinyl Addit Technol 26:35–42

    Article  CAS  Google Scholar 

  44. Howell BA, Lazar ST (2021) Biobased glycerol hyperbranched poly(ester)s of precise structure as plasticizers for poly(vinyl chloride). Modern Concepts Mater Sci. https://doi.org/10.33552/MMS.2021.04.000587

    Article  Google Scholar 

  45. Daniels PH (2009) A brief overview of theories of PVC plasticization and methods used to evaluate PVC-plasticizer interaction. J Vinyl Addit Technol 15:219–223

    Article  CAS  Google Scholar 

  46. Bocque M, Voirin C, Lapinte V, Caillol S, Robin J-J (2016) Petro-based and bio-based plasticizers : chemical structures to plasticizing properties. J Polym Sci Polym Chem 54:11–33

    Article  CAS  Google Scholar 

  47. Gao C, Zhang X, Sun J, Yuan Z, Han S, Liu Y, Ji S (2018) Poly(hexane succinate) plasticizer designed for poly(vinyl chloride) with a high efficiency, nontoxicity, and improved migration resistance. J Appl Polym Sci 135:46388

    Article  CAS  Google Scholar 

  48. Gao C, Wang B, Hu Z, Liu Y, Wang H, Zhang X, Yu Y (2019) Effect of the molecular weight on the plasticization properties of poly(hexane succinate) in poly(vinyl chloride) blends. J Appl Polym Sci 136:47081

    Article  CAS  Google Scholar 

  49. Howell BA, Lazar ST (2019) Biobased plasticizers from carbohydrate-derived 2,5-Bis(hydroxymethyl) furan. Ind Eng Chem Res 58:1222–1228

    Article  CAS  Google Scholar 

  50. Ma Y, Song F, Yu J, Wang N, Jia P, Zhou YJ (2021) Combining renewable eleostearic acid and eugenol to fabricate sustainable plasticizer and its effect of plasticizing on PVC. J Polym Environ. https://doi.org/10.1007/s10924-021-02341-w

    Article  Google Scholar 

  51. Ma Y, Liao S, Li Q, Guan Q, Jia P, Zhou Y (2020) Physical and chemical modofications of poly(vinyl chloride) materials to prevent plasticizer migration—still on the run. React Funct Polym 147:104458

    Article  CAS  Google Scholar 

  52. Kumar S (2019) Recent developments of biobased plasticizers and their effect on mechanical and thermal properties of poly(vinyl chloride): a review. Ind Eng Chem Res 58:11659–11672

    Article  CAS  Google Scholar 

  53. Zhang Z, Jiang PP, Liu D, Feng S, Zhang P, Wang Y, Fu J, Agus H (2021) Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride). J Mater Sci 56:10155–10182

    Article  CAS  Google Scholar 

  54. Czogala J, Pankalla E, Turczyn R (2021) Recent attempts in the design of efficient PVC plasticizers with reduced migration. Materials 14:844–872

    Article  CAS  Google Scholar 

  55. Howell BA, Alrubayyi A, Ostrander EA (2019) Thermal properties of charring plasticizers from the biobased alcohols, pentaerythritol and 3,5-dihydroxylbenzoic acid. J Therm Anal Calorim 138:2661–1668

    Article  CAS  Google Scholar 

  56. Meinier R, Fellah M, Sonnier R, Ferry L (2021) Ignition and charring of PVC-based electric cables. Fire Technol. https://doi.org/10.1007/s10694-021-01168-0

    Article  Google Scholar 

  57. ISO 13943 (2007–2017) Fire safety—vocabulary. 3ed edn.

  58. ASTM E176-21 (2021) Standard terminology of fire standards

  59. Wilkie CA, Morgan AB (eds) (2010) Fire Retardancy of polymeric materials, 2nd edn. Taylor and Francis, Boca Raton

    Google Scholar 

  60. Hirschler MM (2017) Procedures for development and revision of codes and standards associated with fire safety in the USA. Fire Mater 41:1058–1071

    Article  CAS  Google Scholar 

  61. Hirschler MM (2017) Poly(vinyl chloride) and its fire properties. Fire Mater 41:993–1006

    Article  CAS  Google Scholar 

  62. https://codes.iccsafe.org/content/IFC2021P1. Accessed 14 Jan 2022

  63. Hall JR Jr, Watts JM Jr (2016) SFPE handbook of fire protection engineering, 5th edn. Society for Fire Protection Engineering, Gaithersburg

    Google Scholar 

  64. Schartel B, Wilkie CA, Camino G (2016) Recommendations on the scientific approach to polymer flame retardancy: Part 1—scientific terms and methods. J Fire Sci 34:447–467

    Article  Google Scholar 

  65. Schartel B, Wilkie CA, Camino G (2017) Recommendations on the scientific approach to polymer flame retardancy: Part 2—concepts. J Fire Sci 35:3–20

    Article  CAS  Google Scholar 

  66. Schartel B, Hull TR (2007) Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater 31:327–354

    Article  CAS  Google Scholar 

  67. UL UL-1685 Vertical-tray fire propagation and smoke-release test for electrical and optical fiber cables

  68. UL-1666 Test for flame propagation and height of electrical and optical-fiber cables installed vertically in shafts

  69. UL-910 Test for flame propagation and smoke density values for electrical and optical fiber cables used in spaces transporting environmental air

  70. Weil ED, Hirschler MM, Patel NG, Said MM, Shakir S (1992) Oxygen index: correlations to other fire tests. Fire Mater 16:159–167

    Article  CAS  Google Scholar 

  71. Hu C, Fontaine G, Tranchard P, Delaunay T, Collinet M, Marcille S, Bourbigot S (2018) In-situ investigation of temperature evolution of drippings via an optimized UL-94 instrumentation: Application to flame retarded polybutylene succinate. Polym Degrad Stab 155:145–152

    Article  CAS  Google Scholar 

  72. Hong S, Yang J, Anh S, Mun Y, Lee G (2004) Flame retardancy performance of various UL94 classified materials exposed to external ignition sources. Fire Mater 28:25–31

    Article  CAS  Google Scholar 

  73. McCoy CG, Stoliarov SI (2021) Experimental characterization and modeling of boundary conditions and flame spread dynamics observed in the UL-94V test. Combust Flame 225:214–227

    Article  CAS  Google Scholar 

  74. Marti J, Onate E, Idelsohn SR (2018) A finite element model for the simulation of the UL-94 burning test. Fire Technol 14:1783–1805

    Article  Google Scholar 

  75. Kempel F, Schartel B, Marti JM, Butler KM, Rossi R, Idesohn SR, Onate E, Hofmann A (2015) Modeling the vertical UL 94 test: competition and collaboration between melt dripping, gasification and combustion. Fire Mater 39:570–584

    Article  CAS  Google Scholar 

  76. Morgan AB, Bundy M (2007) Cone calorimeter analysis of UL-94 V-rated plastics. Fire Mater 31:257–283

    Article  CAS  Google Scholar 

  77. Babrauskas V (1995) Specimen heat fluxes for bench-scale heat release rate testing. Fire Mater 19:243–252

    Article  CAS  Google Scholar 

  78. Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272

    Article  CAS  Google Scholar 

  79. Schartel B, Bartholmai M, Knoll U (2005) Some comments on the use of cone calorimeter data. Polym Degrad Stab 88:540–547

    Article  CAS  Google Scholar 

  80. Camino G, Costa L (1980) Thermal degradation of a highly chlorinated paraffin used as a fire retardant additive for polymers. Polym Degrad Stab 2:23–33

    Article  CAS  Google Scholar 

  81. Weil ED, Levchik S, Moy P (2006) Flame and smoke retardants in vinyl chloride polymers—commercial usage and current developments. J Fire Sci 24:211–236

    Article  CAS  Google Scholar 

  82. Pan Y-T, Yuan Y, Wang D-Y, Yang R (2020) An overview of the flame retardants for poly(vinyl chloride): recent states and perspective. Chin J Chem 38:1870–1896

    Article  CAS  Google Scholar 

  83. Swann JD, Ding Y, Stoliarov SI (2020) A quantitative comparison of the pyrolysis and combustion behavior of plasticized and rigid poly(vinyl chloride) using two-dimensional modeling. Fire Saf J. https://doi.org/10.1016/j.firesaf.2019.102910

    Article  Google Scholar 

  84. Wadey BL (2003) An innovative plasticizer for sensitive applications. J Vinyl Addit Technol 9:172–176

    Article  CAS  Google Scholar 

  85. Weil ED (2005) Polym Adv Technol 16:707–716

    Article  CAS  Google Scholar 

  86. Molefe DM, Labuschagne J, Focke WW (2015) The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized poly(vinyl chloride). J Fire Sci 33:493–510

    Article  CAS  Google Scholar 

  87. Labuschagne J, Molefe D, Focke WW, Ofosu O (2019) Layered double hydroxide derivatives as flame retardants for flexible PVC. Macromol Symp. https://doi.org/10.1002/masy.201800148

    Article  Google Scholar 

  88. Dang L, Lv Z, Du X, Tang D, Zhao Y, Zhu D, Xu S (2020) Flame retardancy and smoke suppression of molybdenum trioxide doped magnesium hydrate in flexible polyvinyl chloride. Polym Adv Technol 31:2108–2121

    Article  CAS  Google Scholar 

  89. Meng W, Wu W, Zhang W, Cheng L, Han X, Xu J, Qu H (2019) Bio-based Mg(OH)2 @ M-Phyt: improving the flame-retardant and mechanical properties of flexible poly(vinyl chloride). Polym Int 68:1759–1766

    Article  CAS  Google Scholar 

  90. Schartel B, Kunze R, Neubert D, Tidjani A (2002) ZnS as fire retardant in plasticized PVC. Polym Int 51:213–222

    Article  CAS  Google Scholar 

  91. https://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive.(Accessed 14 Jan 2022)

  92. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1399998664957&uri=CELEX:02011L0065-20140129. Accessed 14 Jan 2022

  93. https://en.wikipedia.org/wiki/Waste_Electrical_and_Electronic_Equipment_Directive. Accessed 14 Jan 2022

  94. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019. Accessed 14 Jan 2022

  95. Jia P, Zhang M, Liu C, Zhou Y-H (2015) Properties of poly(vinyl chloride) incorporated with a novel soybean oil based secondary plasticizer containing a flame retardant group. J Appl Polym Sci 132:42111

    Google Scholar 

  96. Jia P, Zhang M, Hu L, Bo C, Zhou Y-H (2015) Synthesis, application, and flame-retardant mechanism of a novel phosphorus-containing plasticizer based on castor oil for polyvinyl chloride. J Therm Anal Calorim 120:1731–1740

    Article  CAS  Google Scholar 

  97. Jia P, Hu L, Feng G, Bo C, Zhou J, Zhang M, Zhou Y (2017) Thermal Degradation and Flame Retardant Mechanism of poly(vinyl chloride) plasticizer containing THEIC and diethyl phosphates groups for the preparation of flame-retardant PVC materials. RSC Adv 7:897–903

    Article  CAS  Google Scholar 

  98. Jia P, Ma Y, Zhang M, Hu L, Li Q, Ya X, Zhou Y (2019) Flexible PVC materials grafted with castor oil derivative containing synergistice flame retardant groups of nitrogen and phosphorus. Sci Rep 9:1766–1773

    Article  CAS  Google Scholar 

  99. Wang F, Pan S, Zhang P, Fan H, Chen Y, Yun J (2018) Synthesis and application of phosphorus-containing flame retardant plasticizer for polyvinylchloride. Fibers Polym 19:1057–1063

    Article  CAS  Google Scholar 

  100. Xu Y, Wang S, Chang J, Xu Z, Zeng Q, Wang Z, Yan J, Chen Y (2020) A simple approach with scale-up potential towards intrinsically flame-retardant bio-based co-plasticizer for PVC artificial materials. J Leather Scie Eng. https://doi.org/10.1186/s42825-020-00022-3

    Article  Google Scholar 

  101. Jia P, Zhang M, Hu L, Bo C, Zhou Y (2015) Thermal degradation and flame retardant mechanism of poly(vinyl chloride) plasticized with a novel chlorinated phosphate based on soybean oil. Thermochim Acta 613:113–120

    Article  CAS  Google Scholar 

  102. Jia P, Zhang M, Hu L et al (2015) Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean-oil-based plasticizer containing phosphaphenanthrene groups. Polym Degrad Stab 121:292–302

    Article  CAS  Google Scholar 

  103. Xu Y, Wang S, Chang J, Xu Z, Zeng Q, Wang Z, Yan J, Chen Y (2020) A simple approach with scale-up potential towards intrinsically flame-retardant bio-based co-plasticizer for PVC artificial materials. J Leather Sci Eng. https://doi.org/10.1186/s42825-020-00022-3

    Article  Google Scholar 

  104. Xu L, Yan S, Fu J, Li J, Xie J (2020) Study on plasticization and flame retardancy of phosphorus-containing branched polybutylene adipate in poly(vinyl chloride). J Appl Poly Sci. https://doi.org/10.1002/APP.48335

    Article  Google Scholar 

  105. Chen J, Zengshe L, Xiaoying L (2016) Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride). Polym Degrad Stab 126:58–64

    Article  CAS  Google Scholar 

  106. Hou D, Wang S, Chang J, Xu Z, Zeng Q, Wang Z, Yang Y, Yan J, Chen Y (2020) Cardanol with a covalently attached organophosphate moiety as a halogen-free, intrinsically flame-retardant PVC bio-Plasticizer. Fibers and Polymers 21:1649–1656

    Article  CAS  Google Scholar 

  107. Sim M-J, Cha S-H, Lee J-C (2021) Enhancement of flame retardancy and physical property for poly(vinyl chloride) having renewable cardanol-based self-polymerizable phosphonate under heat treatment process. Polymer Test 100:107266

    Article  CAS  Google Scholar 

  108. Bocque M, Lapinte V, Courault V, Couve J, Cassagnau P, Robin J-J (2018) Phosphonated lipids at primary plasticizers for PVC with improved flame retardancy. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201800062

    Article  Google Scholar 

  109. Jia P, Zhang M, Hu L, Bo C, Zhou Y (2017) Thermal Degradation and Flame Retardant Mechanism of poly(vinyl chloride) plasticizer containing THEIC and diethyl phosphates groups for the preparation of flame-retardant PVC materials. RSC Adv 7:897–903

    Article  CAS  Google Scholar 

  110. Wei X-F, Linde E, Hedenqvist MS (2019) Plasticiser loss from plastic or rubber products through diffusion and evaporation. Mater Degrad 18:1–8

    CAS  Google Scholar 

  111. Luciani A, Todaro C, Martinelli D, Peila D (2020) Long-term durability assessment of PVC-P waterproofing geomembranes through laboratory test. Tunnel Underground Space Technol 103:103499

    Article  Google Scholar 

  112. Wu S, Kondo Y, Kakimato MA, Yang B, Yamada H, Kuwajima I, Lambard G, Hongo K, Xu Y, Shiomi J, Schick C, Morikawa J, Yoshida R (2019) Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm. NPJ Comput Mater 5:66

    Article  CAS  Google Scholar 

  113. Tran HD, Kim C, Chen L, Chandrasekaran A, Batra R, Venkatram S, Kamal D, Lightstone JP, Gurnani R, Shetty P, Ramprasad M, Las J, Shelton M, Ramprasad R (2020) Machine-learning predictions of polymer properties with polymer genome. J Appl Phys 128:171104

    Article  CAS  Google Scholar 

  114. Nguyen D, Tao L, Li Y (2022) Integration of machine learning and coarse-grained molecular simulations polymer materials: physical understandings and molecular design. Front Chem 9:820417

    Article  CAS  Google Scholar 

  115. Sharma A, Mukhopadhyay T, Rangappa SM, Siengchin S, Kushvaha V (2022) Advances in computational intelligence of polymer composite materials: machine learning assisted modeling, analysis and design. Arch Computat Methods Eng. https://doi.org/10.1007/s11831-021-09700-9

    Article  Google Scholar 

  116. Patra TK (2022) Data-driven methods for accelerating polymer design. ACS Polym Au 2:8–26

    Article  CAS  Google Scholar 

Download references

Funding

This work was not funded,

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander B. Morgan or Prithu Mukhopadhyay.

Ethics declarations

Conflict of interest

The authors declare having no conflict of interest associated with the topics in this paper.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morgan, A.B., Mukhopadhyay, P. A targeted review of bio-derived plasticizers with flame retardant functionality used in PVC. J Mater Sci 57, 7155–7172 (2022). https://doi.org/10.1007/s10853-022-07096-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07096-w

Navigation