Skip to main content
Log in

Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride)

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Plasticized polyvinyl chloride (PVC) has been widely used in the world. Petroleum-based plasticizers especially phthalates have been the most common plasticizers used in PVC. However, the global petroleum resources are becoming scarce gradually, and the hygienic requirements for plasticizers are increasing. Owing to the negative impact of petroleum-based plasticizers on human health and the environment, their use has been restricted in the USA, the European and so on. Biomass renewable resources have wide range of sources and low prices, and the chemicals obtained from them have various structures, which can provide a huge platform to design novel PVC plasticizers with the aim of replacing traditional phthalate plasticizers. Many bio-based PVC plasticizers, such as vegetable oil-based plasticizers, cardanol-based plasticizers, lactic acid-based plasticizers, waste cooking oil-based plasticizers, polyester plasticizers, hyperbranched plasticizers and so on, have been extensively studied. We have reviewed recent research progress on different types of novel bio-based PVC plasticizers and assorted them by raw materials and chemical structure. Through in-depth analysis of the relationship between the chemical structure and the plasticizing performance, the efficiency of plasticizers may be predicted before they have been designed. This review will be beneficial for the development of bio-based plasticizers by pointing out the research and application direction.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Reprint from ref. [38]. Published by The Royal Society of Chemistry

Figure 1

Reprint from ref. [38]. Published by The Royal Society of Chemistry

Scheme 2

Reprinted from ref. [43]. Published by The Royal Society of Chemistry

Scheme 3

Reprinted from ref. [44]. Copyright 2018 Springer Nature

Scheme 4

Reprinted with permission from ref. [54]. Copyright 2018 American Chemical Society

Figure 2

Reprinted with permission from ref. [55]. Copyright 2018 American Chemical Society

Scheme 5

Reprinted with permission from ref. [55]. Copyright 2018 American Chemical Society

Scheme 6

Reprinted from ref. [70]. Copyright 2019 Elsevier

Scheme 7

Reprinted with permission from ref. [72]. Copyright 2020 American Chemical Society

Scheme 8

Reprinted with permission from ref. [75]. Copyright 2018 American Chemical Society

Figure 3

Reprinted with permission from ref. [75]. Copyright 2018 American Chemical Society

Scheme 9

Reprinted with permission from ref. [87]. Copyright 2019 American Chemical Society

Scheme 10

Reprinted from ref. [88]. Copyright 2020 Molecular Diversity Preservation International

Scheme 11

Reprinted with permission from ref. [89]. Copyright 2020 American Chemical Society

Scheme 12

Reprinted from ref. [97]. Copyright 2020 Elsevier

Figure 4

Reprinted from ref. [97]. Copyright 2020 Elsevier

Scheme 13

Reprinted from ref. [98]. Copyright 2018 Elsevier

Scheme 14

Reprinted from ref. [102]. Copyright 2017 Elsevier

Scheme 15

Reprinted from ref. [111]. Copyright 2020 Elsevier

Scheme 16

Reprinted from ref. [115]. Copyright 2019 Elsevier

Scheme 17

Reprinted with permission from ref. [116]. Copyright 2019 American Chemical Society

Figure 5

Reprinted with permission from ref. [116]. Copyright 2019 American Chemical Society

Scheme 18

Reprinted with permission from ref. [107]. Copyright 2020 Elsevier

Scheme 19

Reprinted with permission from ref. [108]. Copyright 2019 American Chemical Society

Scheme 20

Reprinted with permission from ref. [118]. Copyright 2020 Wiley

Similar content being viewed by others

References

  1. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  2. Heudorf U, Mersch-Sundermann V, Angerer J (2007) Phthalates: toxicology and exposure. Int J Hyg Environ Health 210(5):623–634. https://doi.org/10.1016/j.ijheh.2007.07.011

    Article  CAS  Google Scholar 

  3. Yu J, Sun L, Ma C, Qiao Y, Yao H (2016) Thermal degradation of PVC: a review. Waste Manag 48:300–314. https://doi.org/10.1016/j.wasman.2015.11.041

    Article  CAS  Google Scholar 

  4. Bocqué M, Voirin C, Lapinte V, Caillol S, Robin J-J (2016) Petro-based and bio-based plasticizers: chemical structures to plasticizing properties. J Polym Sci Polym Chem 54(1):11–33. https://doi.org/10.1002/pola.27917

    Article  CAS  Google Scholar 

  5. Kumar S (2019) Recent developments of biobased plasticizers and their effect on mechanical and thermal properties of poly(vinyl chloride): a review. Ind Eng Chem Res 58(27):11659–11672. https://doi.org/10.1021/acs.iecr.9b02080

    Article  CAS  Google Scholar 

  6. Rahman M, Brazel C (2004) The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci 29(12):1223–1248. https://doi.org/10.1016/j.progpolymsci.2004.10.001

    Article  CAS  Google Scholar 

  7. Halden RU (2010) Plastics and health risks. Annu Rev Public Health 31:179–194. https://doi.org/10.1146/annurev.publhealth.012809.103714

    Article  Google Scholar 

  8. Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Bjorn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R, Ochi D, Watanuki Y, Moore C, Viet PH, Tana TS, Prudente M, Boonyatumanond R, Zakaria MP, Akkhavong K, Ogata Y, Hirai H, Iwasa S, Mizukawa K, Hagino Y, Imamura A, Saha M, Takada H (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B Biol Sci 364(1526):2027–2045. https://doi.org/10.1098/rstb.2008.0284

    Article  CAS  Google Scholar 

  9. Schettler T (2006) Human exposure to phthalates via consumer products. Int J Androl 29(1):134–139. https://doi.org/10.1111/j.1365-2605.2005.00567.x (discussion 181-135)

    Article  CAS  Google Scholar 

  10. Bodaghi A (2019) An overview on the recent developments in reactive plasticizers in polymers. Polym Adv Technol 31(3):355–367. https://doi.org/10.1002/pat.4790

    Article  CAS  Google Scholar 

  11. Jamarani R, Erythropel HC, Nicell JA, Leask RL, Maric M (2018) How green is your plasticizer? Polymers (Basel). https://doi.org/10.3390/polym10080834

    Article  Google Scholar 

  12. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30(4):293–342. https://doi.org/10.1210/er.2009-0002

    Article  CAS  Google Scholar 

  13. Swan SH (2008) Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environ Res 108(2):177–184. https://doi.org/10.1016/j.envres.2008.08.007

    Article  CAS  Google Scholar 

  14. Camacho L, Latendresse JR, Muskhelishvili L, Law CD, Delclos KB (2020) Effects of intravenous and oral di(2-ethylhexyl) phthalate (DEHP) and 20% Intralipid vehicle on neonatal rat testis, lung, liver, and kidney. Food Chem Toxicol 144:111497. https://doi.org/10.1016/j.fct.2020.111497

    Article  CAS  Google Scholar 

  15. Bider RC, Lluka T, Himbert S, Khondker A, Qadri SM, Sheffield WP, Rheinstadter MC (2020) Stabilization of lipid membranes through partitioning of the blood bag plasticizer di-2-ethylhexyl phthalate (DEHP). Langmuir 36(40):11899–11907. https://doi.org/10.1021/acs.langmuir.0c01964

    Article  CAS  Google Scholar 

  16. Cheng Z, Yao Y, Sun H (2020) Comparative uptake, translocation and subcellular distribution of phthalate esters and their primary monoester metabolites in Chinese cabbage (Brassica rapa var. chinensis). Sci Total Environ 742:140550. https://doi.org/10.1016/j.scitotenv.2020.140550

    Article  CAS  Google Scholar 

  17. Jia P, Xia H, Tang K, Zhou Y (2018) Plasticizers derived from biomass resources: a short review. Polymers (Basel). https://doi.org/10.3390/polym10121303

    Article  Google Scholar 

  18. Xu H, Fan T, Ye N, Wu W, Huang D, Wang D, Wang Z, Zhang L (2020) Plasticization effect of bio-based plasticizers from soybean oil for tire tread rubber. Polymers (Basel). https://doi.org/10.3390/polym12030623

    Article  Google Scholar 

  19. Volpe V, De Feo G, De Marco I, Pantani R (2018) Use of sunflower seed fried oil as an ecofriendly plasticizer for starch and application of this thermoplastic starch as a filler for PLA. Ind Crop Prod 122:545–552. https://doi.org/10.1016/j.indcrop.2018.06.014

    Article  CAS  Google Scholar 

  20. Hassan AA, Formela K, Wang S (2019) Reclaimed rubber in situ grafted with soybean oil as a novel green reactive plasticizer in SBR/silica compounds. ACS Sustain Chem Eng 7(17):14991–15001. https://doi.org/10.1021/acssuschemeng.9b03339

    Article  CAS  Google Scholar 

  21. Mukherjee S, Ghosh M (2019) Performance evaluation and biodegradation study of polyvinyl chloride films with castor oil-based plasticizer. J Am Oil Chem Soc 97(2):187–199. https://doi.org/10.1002/aocs.12294

    Article  CAS  Google Scholar 

  22. Li M, Li S, Xia J, Ding C, Wang M, Xu L, Yang X, Huang K (2017) Tung oil based plasticizer and auxiliary stabilizer for poly(vinyl chloride). Mater Des 122:366–375. https://doi.org/10.1016/j.matdes.2017.03.025

    Article  CAS  Google Scholar 

  23. Chen J, Liu Z, Wang K, Huang J, Li K, Nie X, Jiang J (2018) Epoxidized castor oil-based diglycidyl-phthalate plasticizer: synthesis and thermal stabilizing effects on poly(vinyl chloride). J Appl Polym Sci. https://doi.org/10.1002/app.47142

    Article  Google Scholar 

  24. Awale RJ, Ali FB, Azmi AS, Puad NIM, Anuar H, Hassan A (2018) Enhanced flexibility of biodegradable polylactic acid/starch blends using epoxidized palm oil as plasticizer. Polymers (Basel). https://doi.org/10.3390/polym10090977

    Article  Google Scholar 

  25. Chen J, Li K, Wang Y, Huang J, Nie X, Jiang J (2017) Synthesis and properties of a novel environmental epoxidized glycidyl ester of ricinoleic acetic ester plasticizer for poly(vinyl chloride). Polymers (Basel). https://doi.org/10.3390/polym9120640

    Article  Google Scholar 

  26. Msanne J, Kim H, Cahoon EB (2020) Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils. Biochimie 178:4–14. https://doi.org/10.1016/j.biochi.2020.09.020

    Article  CAS  Google Scholar 

  27. Giannakas A, Patsaoura A, Barkoula NM, Ladavos A (2017) A novel solution blending method for using olive oil and corn oil as plasticizers in chitosan based organoclay nanocomposites. Carbohydr Polym 157:550–557. https://doi.org/10.1016/j.carbpol.2016.10.020

    Article  CAS  Google Scholar 

  28. Stolp LJ, Gronlund PJ, Kodali DR (2019) Soybean oil fatty acid ester estolides as potential plasticizers. J Am Oil Chem Soc 96(6):727–738. https://doi.org/10.1002/aocs.12214

    Article  CAS  Google Scholar 

  29. Bhasney SM, Patwa R, Kumar A, Katiyar V (2017) Plasticizing effect of coconut oil on morphological, mechanical, thermal, rheological, barrier, and optical properties of poly(lactic acid): a promising candidate for food packaging. J Appl Polym Sci. https://doi.org/10.1002/app.45390

    Article  Google Scholar 

  30. Wai PT, Jiang P, Shen Y, Zhang P, Gu Q, Leng Y (2019) Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Adv 9(65):38119–38136. https://doi.org/10.1039/c9ra05943a

    Article  CAS  Google Scholar 

  31. Jia P, Zhang M, Hu L, Bo C, Zhou Y (2015) Thermal degradation and flame retardant mechanism of poly(vinyl chloride) plasticized with a novel chlorinated phosphate based on soybean oil. Thermochim Acta 613:113–120. https://doi.org/10.1016/j.tca.2015.05.011

    Article  CAS  Google Scholar 

  32. Jia P-Y, Bo C-Y, Zhang L-Q, Hu L-H, Zhang M, Zhou Y-H (2015) Synthesis of castor oil based plasticizers containing flame retarded group and their application in poly (vinyl chloride) as secondary plasticizer. J Ind Eng Chem 28:217–224. https://doi.org/10.1016/j.jiec.2015.02.017

    Article  CAS  Google Scholar 

  33. Thirupathiah G, Satapathy S, Palanisamy A (2019) Studies on epoxidised castor oil as co-plasticizer with epoxidised soyabean oil for PVC processing. J Renew Mater 7(8):775–785. https://doi.org/10.32604/jrm.2019.06399

    Article  CAS  Google Scholar 

  34. Zhang H, Zhu F, Fu Q, Zhang X, Zhu X (2019) Mechanical properties of renewable plasticizer based on ricinoleic acid for PVC. Polym Test 76:199–206. https://doi.org/10.1016/j.polymertesting.2019.03.020

    Article  CAS  Google Scholar 

  35. Chu H, Ma J (2018) A strategy to prepare internally plasticized PVC using a castor oil based derivative. Korean J Chem Eng 35(11):2296–2302. https://doi.org/10.1007/s11814-018-0118-5

    Article  CAS  Google Scholar 

  36. Gama NV, Santos R, Godinho B, Silva R, Ferreira A (2019) Methyl acetyl ricinoleate as polyvinyl chloride plasticizer. J Polym Environ 27(4):703–709. https://doi.org/10.1007/s10924-019-01383-5

    Article  CAS  Google Scholar 

  37. Ma Y, Song F, Kong Q, Li Q, Jia P, Zhou Y (2020) Preparation and performance of bio-based polyol ester from one-pot synthesis of castor oil as nontoxic poly(vinyl chloride) plasticizer. J Polym Environ 28(8):2101–2107. https://doi.org/10.1007/s10924-020-01754-3

    Article  CAS  Google Scholar 

  38. Fu Q, Long Y, Gao Y, Ling Y, Qian H, Wang F, Zhu X (2019) Synthesis and properties of castor oil based plasticizers. RSC Adv 9(18):10049–10057. https://doi.org/10.1039/c8ra10288k

    Article  CAS  Google Scholar 

  39. Jia P, Feng G, Bo C, Hu L, Yang X, Zhang L, Zhang M, Zhou Y (2018) A composition of phosphaphenanthrene groups-containing castor-oil-based phosphate plasticizer for PVC: Synthesis, characterization and property. J Ind Eng Chem 60:192–205. https://doi.org/10.1016/j.jiec.2017.11.006

    Article  CAS  Google Scholar 

  40. Jia P, Hu L, Zhang M, Feng G, Zhou Y (2017) Phosphorus containing castor oil based derivatives: potential non-migratory flame retardant plasticizer. Eur Polym J 87:209–220. https://doi.org/10.1016/j.eurpolymj.2016.12.023

    Article  CAS  Google Scholar 

  41. Jia P, Zhang M, Liu C, Hu L, Feng G, Bo C, Zhou Y (2015) Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer. RSC Adv 5(51):41169–41178. https://doi.org/10.1039/c5ra05784a

    Article  CAS  Google Scholar 

  42. Jia P, Zhang M, Hu L, Feng G, Bo C, Zhou Y (2015) Synthesis and application of environmental castor oil based polyol ester plasticizers for poly(vinyl chloride). ACS Sustain Chem Eng 3(9):2187–2193. https://doi.org/10.1021/acssuschemeng.5b00449

    Article  CAS  Google Scholar 

  43. Jia P, Hu L, Feng G, Bo C, Zhou J, Zhang M, Zhou Y (2017) Design and synthesis of a castor oil based plasticizer containing THEIC and diethyl phosphate groups for the preparation of flame-retardant PVC materials. RSC Adv 7(2):897–903. https://doi.org/10.1039/c6ra25014a

    Article  CAS  Google Scholar 

  44. Chen J, Liu Z, Nie X, Jiang J (2018) Synthesis and application of a novel environmental C26 diglycidyl ester plasticizer based on castor oil for poly(vinyl chloride). J Mater Sci 53(12):8909–8920. https://doi.org/10.1007/s10853-018-2206-7

    Article  CAS  Google Scholar 

  45. Brostow W, Lu X, Osmanson AT (2018) Nontoxic bio-plasticizers for PVC as replacements for conventional toxic plasticizers. Polym Test 69:63–70. https://doi.org/10.1016/j.polymertesting.2018.03.007

    Article  CAS  Google Scholar 

  46. Chen J, Li X, Wang Y, Huang J, Li K, Nie X, Jiang J (2016) Synthesis and application of environmental soybean oil-based epoxidized glycidyl ester plasticizer for poly(vinyl chloride). Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201600216

    Article  Google Scholar 

  47. Choi MS, Rehman SU, Kim H, Han SB, Lee J, Hong J, Yoo HH (2018) Migration of epoxidized soybean oil from polyvinyl chloride/polyvinylidene chloride food packaging wraps into food simulants. Environ Sci Pollut Res Int 25(5):5033–5039. https://doi.org/10.1007/s11356-017-0951-9

    Article  CAS  Google Scholar 

  48. Yang D, Peng X, Zhong L, Cao X, Chen W, Zhang X, Liu S, Sun R (2014) “Green” films from renewable resources: properties of epoxidized soybean oil plasticized ethyl cellulose films. Carbohydr Polym 103:198–206. https://doi.org/10.1016/j.carbpol.2013.12.043

    Article  CAS  Google Scholar 

  49. He W, Zhu G, Gao Y, Wu H, Fang Z, Guo K (2020) Green plasticizers derived from epoxidized soybean oil for poly (vinyl chloride): continuous synthesis and evaluation in PVC films. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122532

    Article  Google Scholar 

  50. Jia P, Zhang M, Hu L, Zhou Y (2016) Green plasticizers derived from soybean oil for poly(vinyl chloride) as a renewable resource material. Korean J Chem Eng 33(3):1080–1087. https://doi.org/10.1007/s11814-015-0213-9

    Article  CAS  Google Scholar 

  51. Jia P, Zhang M, Liu C, Hu L, Zhou Y-H (2015) Properties of poly(vinyl chloride) incorporated with a novel soybean oil based secondary plasticizer containing a flame retardant group. J Appl Polym Sci. https://doi.org/10.1002/app.42111

    Article  Google Scholar 

  52. Jia P, Zhang M, Hu L, Zhou J, Feng G, Zhou Y (2015) Thermal degradation behavior and flame retardant mechanism of poly(vinyl chloride) plasticized with a soybean-oil-based plasticizer containing phosphaphenanthrene groups. Polym Degrad Stabil 121:292–302. https://doi.org/10.1016/j.polymdegradstab.2015.09.020

    Article  CAS  Google Scholar 

  53. Wang M, Song X, Jiang J, Xia J, Ding H, Li M (2018) Plasticization and thermal behavior of hydroxyl and nitrogen rich group-containing tung-oil-based ester plasticizers for PVC. New J Chem 42(4):2422–2431. https://doi.org/10.1039/c7nj03578k

    Article  CAS  Google Scholar 

  54. Jia P, Ma Y, Xia H, Zheng M, Feng G, Hu L, Zhang M, Zhou Y (2018) Clean synthesis of epoxidized tung oil derivatives via phase transfer catalyst and thiol–ene reaction: a detailed study. ACS Sustain Chem Eng 6(11):13983–13994. https://doi.org/10.1021/acssuschemeng.8b02446

    Article  CAS  Google Scholar 

  55. Chen J, Wang Y, Huang J, Li K, Nie X (2017) Synthesis of tung-oil-based triglycidyl ester plasticizer and its effects on poly(vinyl chloride) soft films. ACS Sustain Chem Eng 6(1):642–651. https://doi.org/10.1021/acssuschemeng.7b02989

    Article  CAS  Google Scholar 

  56. Chavan AP, Gogate PR (2015) Ultrasound assisted synthesis of epoxidized sunflower oil and application as plasticizer. J Ind Eng Chem 21:842–850. https://doi.org/10.1016/j.jiec.2014.04.021

    Article  CAS  Google Scholar 

  57. Chieng BW, Ibrahim NA, Then YY, Loo YY (2017) Epoxidized jatropha oil as a sustainable plasticizer to poly(lactic acid). Polymers (Basel). https://doi.org/10.3390/polym9060204

    Article  Google Scholar 

  58. Carbonell-Verdu A, Garcia-Sanoguera D, Jordá-Vilaplana A, Sanchez-Nacher L, Balart R (2016) A new biobased plasticizer for poly(vinyl chloride) based on epoxidized cottonseed oil. J Appl Polym Sci. https://doi.org/10.1002/app.43642

    Article  Google Scholar 

  59. Chen J, Li X, Wang Y, Huang J, Li K, Nie X, Jiang J (2016) Epoxidized dimeric acid methyl ester derived from rubber seed oil and its application as secondary plasticizer. J Appl Polym Sci. https://doi.org/10.1002/app.43668

    Article  Google Scholar 

  60. Kamarudin SH, Jusoh ER, Abdullah LC, Ismail MHS, Aung MM, Ratnam CT (2019) Thermal and dynamics mechanical analysis of polypropylene blown films with crude palm oil as plasticizer. Indones J Chem. https://doi.org/10.22146/ijc.30460

    Article  Google Scholar 

  61. Lim K, Ching Y, Gan S (2015) Effect of palm oil bio-based plasticizer on the morphological, thermal and mechanical properties of poly(vinyl chloride). Polymers 7(10):2031–2043. https://doi.org/10.3390/polym7101498

    Article  CAS  Google Scholar 

  62. Caillol S (2018) Cardanol: a promising building block for biobased polymers and additives. Curr Opin Green Sustain Chem 14:26–32. https://doi.org/10.1016/j.cogsc.2018.05.002

    Article  Google Scholar 

  63. Yang P, Yan J, Sun H, Fan H, Chen Y, Wang F, Shi B (2015) Novel environmentally sustainable cardanol-based plasticizer covalently bound to PVC via click chemistry: synthesis and properties. RSC Adv 5(22):16980–16985. https://doi.org/10.1039/c4ra15527k

    Article  CAS  Google Scholar 

  64. Greco A, Ferrari F, Maffezzoli A (2019) Mechanical properties of poly(lactid acid) plasticized by cardanol derivatives. Polym Degrad Stabil 159:199–204. https://doi.org/10.1016/j.polymdegradstab.2018.11.028

    Article  CAS  Google Scholar 

  65. Greco A, Ferrari F, Maffezzoli A (2018) Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives. J Therm Anal Calorim 134(1):559–565. https://doi.org/10.1007/s10973-018-7059-4

    Article  CAS  Google Scholar 

  66. Voirin C, Caillol S, Sadavarte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5(9):3142–3162. https://doi.org/10.1039/c3py01194a

    Article  CAS  Google Scholar 

  67. Chen J, Liu Z, Nie X, Zhou Y, Jiang J, Murray RE (2018) Plasticizers derived from cardanol: synthesis and plasticization properties for polyvinyl chloride(PVC). J Polym Res. https://doi.org/10.1007/s10965-018-1524-4

    Article  Google Scholar 

  68. Chen J, Nie X, Jiang J (2018) Synthesis and application of a novel cardanol-based plasticizer as secondary or main plasticizer for poly(vinyl chloride). Polym Int 67(3):269–275. https://doi.org/10.1002/pi.5503

    Article  CAS  Google Scholar 

  69. Hou D, Wang S, Chang J, Xu Z, Zeng Q, Wang Z, Yang Y, Yan J, Chen Y (2020) Cardanol with a covalently attached organophosphate moiety as a halogen-free, intrinsically flame-retardant PVC bio-plasticizer. Fiber Polym 21(8):1649–1656. https://doi.org/10.1007/s12221-020-9918-4

    Article  CAS  Google Scholar 

  70. Briou B, Caillol S, Robin J-J, Lapinte V (2019) Non-endocrine disruptor effect for cardanol based plasticizer. Ind Crop Prod 130:1–8. https://doi.org/10.1016/j.indcrop.2018.12.060

    Article  CAS  Google Scholar 

  71. Jia P, Hu L, Shang Q, Wang R, Zhang M, Zhou Y (2017) Self-plasticization of PVC materials via chemical modification of Mannich base of cardanol butyl ether. ACS Sustain Chem Eng 5(8):6665–6673. https://doi.org/10.1021/acssuschemeng.7b00900

    Article  CAS  Google Scholar 

  72. Ali M, Lu Y, Ahmed S, Khanal S, Xu S (2020) Effect of modified cardanol as secondary plasticizer on thermal and mechanical properties of soft polyvinyl chloride. ACS Omega 5(28):17111–17117. https://doi.org/10.1021/acsomega.0c00826

    Article  CAS  Google Scholar 

  73. Zhang W, Zhang T, Jiang N, Zhang T (2020) Synthesis of a bio-based internal plasticizer from cardanol and its evaluations. Int J Polym Anal Charact 25(2):94–104. https://doi.org/10.1080/1023666x.2020.1746571

    Article  CAS  Google Scholar 

  74. Xu L, Yan S, Fu J, Li J, Xie J (2019) Study on plasticization and flame retardancy of phosphorus-containing branched polybutylene adipate in poly (vinyl chloride). J Appl Polym Sci. https://doi.org/10.1002/app.48335

    Article  Google Scholar 

  75. Lee KW, Chung JW, Kwak S-Y (2018) Highly branched polycaprolactone/glycidol copolymeric green plasticizer by one-pot solvent-free polymerization. ACS Sustain Chem Eng 6(7):9006–9017. https://doi.org/10.1021/acssuschemeng.8b01356

    Article  CAS  Google Scholar 

  76. Zhang G, Li J, Sun S, Luo Y (2019) Azido-terminated hyperbranched multi-arm copolymer as energetic macromolecular plasticizer. Propellants Explos Pyrotech 44(3):345–354. https://doi.org/10.1002/prep.201800270

    Article  CAS  Google Scholar 

  77. Duarah R, Singh YP, Mandal BB, Karak N (2016) Sustainable starch modified polyol based tough, biocompatible, hyperbranched polyurethane with a shape memory attribute. New J Chem 40(6):5152–5163. https://doi.org/10.1039/c5nj03294f

    Article  CAS  Google Scholar 

  78. Li Y, Yu E, Yang X, Wei Z (2019) Multiarm hyperbranched polyester-b-poly(ε-caprolactone): plasticization effect and migration resistance for PVC. J Vinyl Addit Technol 26(1):35–42. https://doi.org/10.1002/vnl.21713

    Article  CAS  Google Scholar 

  79. Lee KW, Chung JW, Kwak S-Y (2016) Synthesis and characterization of bio-based alkyl terminal hyperbranched polyglycerols: a detailed study of their plasticization effect and migration resistance. Green Chem 18(4):999–1009. https://doi.org/10.1039/c5gc02402a

    Article  CAS  Google Scholar 

  80. Wilms D, Stiriba S-E, Frey H (2010) Hyperbranched polyglycerols: from the controlled synthesis of biocompatible polyether polyols to multipurpose applications. Accounts Chem Res 43(1):129–141. https://doi.org/10.1021/ar900158p

    Article  CAS  Google Scholar 

  81. Zhang K, Zhang K, Cheng F, Lin Y, Zhou M, Zhu P (2019) Aging properties and hydrophilicity of maize starch plasticized by hyperbranched poly(citrate glyceride). J Appl Polym Sci. https://doi.org/10.1002/app.46899

    Article  Google Scholar 

  82. Zhang K, Cheng F, Lin Y, Zhou M, Zhu PX (2018) Effect of hyperbranched poly(trimellitic glyceride) with different molecular weight on starch plasticization and compatibility with polyester. Carbohydr Polym 195:107–113. https://doi.org/10.1016/j.carbpol.2018.04.080

    Article  CAS  Google Scholar 

  83. Tong H, Hai J (2019) Sustainable synthesis of bio-based hyperbranched ester and its application for preparing soft polyvinyl chloride materials. Polym Int 68(3):456–463. https://doi.org/10.1002/pi.5730

    Article  CAS  Google Scholar 

  84. Huang Y, Yu E, Li Y, Wei Z (2018) Novel branched poly(ɛ-caprolactone) as a nonmigrating plasticizer in flexible PVC: synthesis and characterization. J Appl Polym Sci. https://doi.org/10.1002/app.46542

    Article  Google Scholar 

  85. Sun Z, Choi B, Feng A, Moad G, Thang SH (2019) Nonmigratory poly(vinyl chloride)-block-polycaprolactone plasticizers and compatibilizers prepared by sequential RAFT and ring-opening polymerization (RAFT-T-ROP). Macromolecules 52(4):1746–1756. https://doi.org/10.1021/acs.macromol.8b02146

    Article  CAS  Google Scholar 

  86. Rusu M, Ursu M, Rusu D (2006) Poly(vinyl chloride) and poly(e-caprolactone) blends for medical use. J Thermoplast Compos Mater 19(2):173–190. https://doi.org/10.1177/0892705706056463

    Article  CAS  Google Scholar 

  87. Howell BA, Lazar ST (2019) Biobased plasticizers from glycerol/adipic acid hyperbranched poly(ester)s. Ind Eng Chem Res 58(37):17227–17234. https://doi.org/10.1021/acs.iecr.9b03869

    Article  CAS  Google Scholar 

  88. Li Q, Shu X, Jia P, Zhou Y (2020) Preparation of biomass-based ester end-capped hyperbranched poly(ether)s via facile one-pot reaction and their performance as non-toxic plasticizers. Polymers (Basel). https://doi.org/10.3390/polym12040913

    Article  Google Scholar 

  89. Chen J, Nie X, Jiang J (2020) Synthesis of a novel bio-oil-based hyperbranched ester plasticizer and its effects on poly(vinyl chloride) soft films. ACS Omega 5(10):5480–5486. https://doi.org/10.1021/acsomega.0c00119

    Article  CAS  Google Scholar 

  90. Tan J, Zhang S, Lu T, Li R, Zhong T, Zhu X (2019) Design and synthesis of ethoxylated esters derived from waste frying oil as anti-ultraviolet and efficient primary plasticizers for poly(vinyl chloride). J Clean Prod 229:1274–1282. https://doi.org/10.1016/j.jclepro.2019.04.395

    Article  CAS  Google Scholar 

  91. Xiong Y, Miao WF, Wang NN, Chen HM, Wang XR, Wang JY, Tan QL, Chen SP (2019) Solid alcohol based on waste cooking oil: synthesis, properties, micromorphology and simultaneous synthesis of biodiesel. Waste Manag 85:295–303. https://doi.org/10.1016/j.wasman.2018.12.036

    Article  CAS  Google Scholar 

  92. Jia P, Zhang M, Hu L, Song F, Feng G, Zhou Y (2018) A strategy for nonmigrating plasticized PVC modified with Mannich base of waste cooking oil methyl ester. Sci Rep 8(1):1589–1596. https://doi.org/10.1038/s41598-018-19958-y

    Article  CAS  Google Scholar 

  93. Liu T, Liu Y, Wu S, Xue J, Wu Y, Li Y, Kang X (2018) Restaurants’ behaviour, awareness, and willingness to submit waste cooking oil for biofuel production in Beijing. J Clean Prod 204:636–642. https://doi.org/10.1016/j.jclepro.2018.09.056

    Article  Google Scholar 

  94. Wu Q, Wang Y, Peng Y, Ke L, Yang Q, Jiang L, Dai L, Liu Y, Ruan R, Xia D, Jiang L (2020) Microwave-assisted pyrolysis of waste cooking oil for hydrocarbon bio-oil over metal oxides and HZSM-5 catalysts. Energy Convers Manag. https://doi.org/10.1016/j.enconman.2020.113124

    Article  Google Scholar 

  95. Chuepeng S, Komintarachat C (2018) Interesterification optimization of waste cooking oil and ethyl acetate over homogeneous catalyst for biofuel production with engine validation. Appl Energy 232:728–739. https://doi.org/10.1016/j.apenergy.2018.09.085

    Article  CAS  Google Scholar 

  96. Orjuela A, Clark J (2020) Green chemicals from used cooking oils: trends, challenges, and opportunities. Curr Opin Green Sustain Chem 26:100369. https://doi.org/10.1016/j.cogsc.2020.100369

    Article  Google Scholar 

  97. Liu D, Jiang P, Nie Z, Wang H, Dai Z, Deng J, Cao Z (2020) Synthesis of an efficient bio-based plasticizer derived from waste cooking oil and its performance testing in PVC. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106625

    Article  Google Scholar 

  98. Zheng T, Wu Z, Xie Q, Fang J, Hu Y, Lu M, Xia F, Nie Y, Ji J (2018) Structural modification of waste cooking oil methyl esters as cleaner plasticizer to substitute toxic dioctyl phthalate. J Clean Prod 186:1021–1030. https://doi.org/10.1016/j.jclepro.2018.03.175

    Article  CAS  Google Scholar 

  99. Feng G, Hu L, Ma Y, Jia P, Hu Y, Zhang M, Liu C, Zhou Y (2018) An efficient bio-based plasticizer for poly (vinyl chloride) from waste cooking oil and citric acid: synthesis and evaluation in PVC films. J Clean Prod 189:334–343. https://doi.org/10.1016/j.jclepro.2018.04.085

    Article  CAS  Google Scholar 

  100. Li H-Z, Chen S-C, Wang Y-Z (2014) Thermoplastic PVA/PLA blends with improved processability and hydrophobicity. Ind Eng Chem Res 53(44):17355–17361. https://doi.org/10.1021/ie502531w

    Article  CAS  Google Scholar 

  101. Yuan Y, Hu Z, Fu X, Jiang L, Xiao Y, Hu K, Yan P, Lei J (2016) Poly(lactic acid) plasticized by biodegradable glyceryl lactate. J Appl Polym Sci. https://doi.org/10.1002/app.43460

    Article  Google Scholar 

  102. Liu T, Jiang P, Liu H, Li M, Dong Y, Wang R, Wang Y (2017) Performance testing of a green plasticizer based on lactic acid for PVC. Polym Test 61:205–213. https://doi.org/10.1016/j.polymertesting.2017.05.012

    Article  CAS  Google Scholar 

  103. Wang Y, Zhou C, Xiao Y, Zhou S, Wang C, Chen X, Hu K, Fu X, Lei J (2018) Preparation and evaluation of acetylated mixture of citrate ester plasticizers for poly(vinyl chloride). Iran Polym J 27(6):423–432. https://doi.org/10.1007/s13726-018-0620-y

    Article  CAS  Google Scholar 

  104. Jia P, Ma Y, Zhang M, Hu L, Zhou Y (2019) Designing rosin-based plasticizers: effect of differently branched chains on plasticization performance and solvent resistance of flexible poly(vinyl chloride) films. ACS Omega 4(2):3178–3187. https://doi.org/10.1021/acsomega.8b03612

    Article  CAS  Google Scholar 

  105. Jia P, Ma Y, Song F, Hu Y, Zhang C, Zhou Y (2019) Toxic phthalate-free and highly plasticized polyvinyl chloride materials from non-timber forest resources in plantation. React Funct Polym. https://doi.org/10.1016/j.reactfunctpolym.2019.104363

    Article  Google Scholar 

  106. Howell BA, Sun W (2018) Biobased plasticizers from tartaric acid, an abundantly available, renewable material. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.8b03486

    Article  Google Scholar 

  107. Pereira VA, Fonseca AC, Costa CSMF, Ramalho A, Coelho JFJ, Serra AC (2020) End-capped biobased saturated polyesters as effective plasticizers for PVC. Polym Test. https://doi.org/10.1016/j.polymertesting.2020.106406

    Article  Google Scholar 

  108. Sinisi A, Degli Esposti M, Toselli M, Morselli D, Fabbri P (2019) Biobased ketal-diester additives derived from levulinic acid: synthesis and effect on the thermal stability and thermo-mechanical properties of poly(vinyl chloride). ACS Sustain Chem Eng 7(16):13920–13931. https://doi.org/10.1021/acssuschemeng.9b02177

    Article  CAS  Google Scholar 

  109. Li W, Qin J, Wang S, Han D, Xiao M, Meng Y (2018) Macrodiols derived from CO2-based polycarbonate as an environmentally friendly and sustainable PVC plasticizer: effect of hydrogen-bond formation. ACS Sustain Chem Eng 6(7):8476–8484. https://doi.org/10.1021/acssuschemeng.8b00735

    Article  CAS  Google Scholar 

  110. Dziwiński EJ, Poźniak BP, Lach J (2017) GC/MS and ESI/MS identification of the new generation plasticizers—cis and trans isomers of some 1,2-cyclohexane dicarboxylic acid di(n- and isononyl) esters. Polym Test 62:319–324. https://doi.org/10.1016/j.polymertesting.2017.07.011

    Article  CAS  Google Scholar 

  111. Park M, Choi I, Lee S, Hong S-j, Kim A, Shin J, Kang H-C, Kim Y-W (2020) Renewable malic acid-based plasticizers for both PVC and PLA polymers. J Ind Eng Chem 88:148–158. https://doi.org/10.1016/j.jiec.2020.04.007

    Article  CAS  Google Scholar 

  112. Nguyen T, Kim YJ, Park SK, Lee KY, Park JW, Cho JK, Shin S (2020) Furan-2,5- and Furan-2,3-dicarboxylate esters derived from marine biomass as plasticizers for poly(vinyl chloride). ACS Omega 5(1):197–206. https://doi.org/10.1021/acsomega.9b02448

    Article  CAS  Google Scholar 

  113. Matos M, Cordeiro RA, Faneca H, Coelho JFJ, Silvestre AJD, Sousa AF (2019) Replacing di(2-ethylhexyl) terephthalate by di(2-ethylhexyl) 2,5-furandicarboxylate for PVC plasticization: synthesis, materials preparation and characterization. Materials (Basel). https://doi.org/10.3390/ma12142336

    Article  Google Scholar 

  114. Sung CR, Kang HG, Hong JY, Kwack SJ (2020) Citrate ester substitutes for di-2-ethylhexyl phthalate: in vivo reproductive and in vitro cytotoxicity assessments. J Toxicol Environ Health A 83(17–18):589–595. https://doi.org/10.1080/15287394.2020.1798832

    Article  CAS  Google Scholar 

  115. Jia P, Ma Y, Feng G, Hu L, Zhou Y (2019) High-value utilization of forest resources: dehydroabietic acid as a chemical platform for producing non-toxic and environment-friendly polymer materials. J Clean Prod 227:662–674. https://doi.org/10.1016/j.jclepro.2019.04.220

    Article  CAS  Google Scholar 

  116. Feng Y, Chu Z, Man L, Hu Y, Zhang C, Yuan T, Yang Z (2019) Fishbone-like polymer from green cationic polymerization of methyl eleostearate as biobased nontoxic PVC plasticizer. ACS Sustain Chem Eng 7(23):18976–18984. https://doi.org/10.1021/acssuschemeng.9b04394

    Article  CAS  Google Scholar 

  117. Hu Y, Yuan L, Zhang X, Zhou H, Wang P, Li G, Wang A, Cong Y, Zhang T, Liang X, Li W, Li N (2019) Production of 1,2-cyclohexanedicarboxylates from diacetone alcohol and fumarates. ACS Sustain Chem Eng 7(3):2980–2988. https://doi.org/10.1021/acssuschemeng.8b04310

    Article  CAS  Google Scholar 

  118. Liu D, Shen Y, Wai PT, Agus H, Zhang P, Jiang P, Nie Z, Jiang G, Zhao H, Zhao M (2020) An efficient plasticizer based on waste cooking oil: structure and application. J Appl Polym Sci. https://doi.org/10.1002/app.50128

    Article  Google Scholar 

  119. Cai D-L, Yue X, Hao B, Ma P-C (2020) A sustainable poly(vinyl chloride) plasticizer derivated from waste cooking oil. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.122781

    Article  Google Scholar 

  120. Liu D, Shen Y, Jiang P, Thin Wai P, Zhang Z, Zhang P, Agus H, Nie Z, Zhao M, Zhao H (2021) An efficient cold-resistant strategy: synthesis and application of green cold-resistant bio-based plasticizer for poly(vinyl chloride). Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.110154

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support to this work by the Fundamental Research Funds for International Cooperation Project (BX2019018) and the International Joint Research Laboratory for Biomass Conversion Technology at Jiangnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PingPing Jiang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Jiang, P., Liu, D. et al. Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride). J Mater Sci 56, 10155–10182 (2021). https://doi.org/10.1007/s10853-021-05934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05934-x

Navigation