Skip to main content

Advertisement

Log in

Chlorophyll derivative intercalation into Nb2C MXene for lithium-ion energy storage

  • Materials for Energy Storage
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) MXenes have attracted extensive attentions for their excellent energy storage ability. In the current study, our main goal is to report on the delamination of the Nb2C MXene using a chlorophyll-a derivative (zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide a (Chl)) to produce Chl@Nb2C composites as the anode materials in the lithium-ion batteries. The electrochemical behaviors of the delaminated Chl@Nb2C composite electrodes were superior to the multilayered pristine Nb2C. The specific capacity of 1%(wt/wt) Chl@Nb2C achieved 384 mA h g−1 at the current density of 100 mA g−1, while the capacity of Nb2C was 295 mA h g−1. Furthermore, the specific capacity of the Chl@Nb2C composite increased along with the increasing number of cycles at the current density of 500 mA g−1. This work provides a novel delaminated strategy by intercalating organic dye aggregates between the MXenes layers to improve the energy storage performance of 2D MXene materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Wang XF et al (2014) Flexible energy-storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782

    Article  CAS  Google Scholar 

  2. Horiba T (2014) Lithium-ion battery systems. Proc IEEE 102(6):939–950

    Article  CAS  Google Scholar 

  3. Li Z et al (2019) Defective lithium storage boosts high rate and long-life span of carbon fibers. ChemistrySelect 4(19):5768–5775

    Article  CAS  Google Scholar 

  4. Liu B et al (2013) Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes. Nano Lett 13(7):3414–3419

    Article  CAS  Google Scholar 

  5. Song H et al (2014) Electrodes engineering of high power, long life and excellent cycling stability for rechargeable lithium batteries. Nano Energy 3:16–25

    Article  CAS  Google Scholar 

  6. Su J-T et al (2020) Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chem Eng J 396:125314

    Article  CAS  Google Scholar 

  7. Bai S et al (2016) Metal–organic framework-based separator for lithium–sulfur batteries. Nat Energy 1(7):1–6

    Article  Google Scholar 

  8. Cheng F et al (2011) Functional materials for rechargeable batteries. Adv Mater 23(15):1695–1715

    Article  CAS  Google Scholar 

  9. Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48(9):1201–1217

    Article  CAS  Google Scholar 

  10. Nitta N et al (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  CAS  Google Scholar 

  11. Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31(3):317–336

    Article  CAS  Google Scholar 

  12. Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv Energy Mater 2(9):1056–1085

    Article  CAS  Google Scholar 

  13. Zhu G-N, Wang Y-G, Xia Y-Y (2012) Ti-based compounds as anode materials for Li-ion batteries. Energy Environ Sci 5(5):6652–6667

    Article  CAS  Google Scholar 

  14. Mashtalir O et al (2013) Intercalation and delamination of layered carbides and carbonitrides. Nat Commun 4(1):1–7

    Article  Google Scholar 

  15. Naguib M et al (2012) MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem Commun 16(1):61–64

    Article  CAS  Google Scholar 

  16. Naguib M et al (2012) Two-dimensional transition metal carbides. ACS Nano 6(2):1322–1331

    Article  CAS  Google Scholar 

  17. Yang Q et al (2018) Recent progress of MXene-based nanomaterials in flexible energy storage and electronic devices. Energy Environ Mater 1(4):183–195

    Article  Google Scholar 

  18. Zhang P et al (2019) Plate-to-layer Bi2MoO6/MXene-heterostructured anode for lithium-ion batteries. Nano-micro Letters 11(1):1–14

    Article  Google Scholar 

  19. Byeon A et al (2017) Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries. ACS Appl Mater Interfaces 9(5):4296–4300

    Article  CAS  Google Scholar 

  20. Ren CE et al (2016) Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage. ChemElectroChem 3(5):689–693

    Article  CAS  Google Scholar 

  21. Naguib M et al (2014) 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26(7):992–1005

    Article  CAS  Google Scholar 

  22. Mashtalir O et al (2015) Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv Mater 27(23):3501–3506

    Article  CAS  Google Scholar 

  23. Naguib M et al (2013) New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J Am Chem Soc 135(43):15966–15969

    Article  CAS  Google Scholar 

  24. Xu W et al (2021) Synthesis of Chl@Ti3C2 composites as an anode material for lithium storage. Front Chem Sci Eng 15(3):709–716

    Article  CAS  Google Scholar 

  25. Ghidiu M et al (2017) Alkylammonium cation intercalation into Ti3C2 (MXene): effects on properties and ion-exchange capacity estimation. Chem Mater 29(3):1099–1106

    Article  CAS  Google Scholar 

  26. Boota M et al (2017) Interaction of polar and nonpolar polyfluorenes with layers of two-dimensional titanium carbide (MXene): intercalation and pseudocapacitance. Chem Mater 29(7):2731–2738

    Article  CAS  Google Scholar 

  27. Fan X et al (2019) MXene Ti3C2Tx for phase change composite with superior photothermal storage capability. J Mater Chem A 7(23):14319–14327

    Article  CAS  Google Scholar 

  28. Jun B-M et al (2019) Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications. Nano Res 12(3):471–487

    Article  CAS  Google Scholar 

  29. Xie Y, Yuan C (2005) Photocatalytic and photoelectrochemical performance of crystallized titanium dioxide sol with neodymium ion modification. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 80(8):954–963

    CAS  Google Scholar 

  30. Tamiaki H, Shibata R, Mizoguchi T (2007) The 17-propionate function of (bacterio) chlorophylls: biological implication of their long esterifying chains in photosynthetic systems. Photochem Photobiol 83(1):152–162

    CAS  Google Scholar 

  31. Tamiaki H et al (1996) Synthetic zinc and magnesium chlorin aggregates as models for supramolecular antenna complexes in chlorosomes of green photosynthetic bacteria. Photochem Photobiol 63(1):92–99

    Article  CAS  Google Scholar 

  32. Duan S et al (2020) Semisynthetic chlorophyll derivatives toward solar energy applications. Solar RRL 4(6):2000162

    Article  CAS  Google Scholar 

  33. Wang B et al (2021) Chlorophyll derivative-sensitized TiO2 electron transport layer for record efficiency of Cs2AgBiBr 6 double Perovskite solar cells. J Am Chem Soc 143(5):2207–2211

    Article  CAS  Google Scholar 

  34. Sun Y et al (2018) Dyad sensitizer of chlorophyll with indoline dye for panchromatic photocatalytic hydrogen evolution. ACS Appl Energy Mater 1(6):2813–2820

    Article  CAS  Google Scholar 

  35. Zhang C et al (2020) A chlorophyll derivative-based bio-solar energy conversion and storage device. Electrochimica Acta 347:136283

    Article  CAS  Google Scholar 

  36. Li Y et al (2020) Chlorosome-like molecular aggregation of chlorophyll derivative on Ti3C2Tx MXene nanosheets for efficient noble metal-free photocatalytic hydrogen evolution. Adv Mater Interfaces 7(8):1902080

    Article  CAS  Google Scholar 

  37. Li Y et al (2021) Aggregate-forming semi-synthetic chlorophyll derivatives/Ti3C2Tx MXene hybrids for photocatalytic hydrogen evolution. Dyes Pigment 194:109583

    Article  CAS  Google Scholar 

  38. Cheng R et al (2018) Understanding the lithium storage mechanism of Ti3C2Tx MXene. J Phys Chem C 123(2):1099–1109

    Article  Google Scholar 

Download references

Acknowledgements

X.Q. and WX.X. contributed equally to this work. The authors thank Chao Zhang for SEM tests and Song-Ying He for TEM measurements. This work was supported by the National Natural Science Foundation of China (No. 11974129 to X.-F.W.), Jilin University and Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number JP17H06436 in Scientific Research on Innovative Areas “Innovation for Light-Energy Conversion (I4LEC)”, Program for Science and Technology of Education Department of Jilin Province (No. JJKH20211036KL) and Jilin Provincial Science and Technology Development Project (No. 20210402054GH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Li or XiaoFeng Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: M. Grant Norton.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 627 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Xu, W., Tang, J. et al. Chlorophyll derivative intercalation into Nb2C MXene for lithium-ion energy storage. J Mater Sci 57, 9971–9979 (2022). https://doi.org/10.1007/s10853-022-06929-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-06929-y

Navigation